

GA 635900 Page 1 of 45

In2Rail

Project Title: INNOVATIVE INTELLIGENT RAIL

Starting date: 01/05/2015

Duration in months: 36

Call (part) identifier: H2020-MG-2014

Grant agreement no: 635900

Deliverable D8.6

Description of the Generic Application Framework and its

constituents

Due date of deliverable Month 27

Actual submission date 30-07-2017

Organization name of lead contractor for this deliverable SIE

Dissemination level PU

Revision Final

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 2 of 45

Authors

 Details of contribution

Authors CAF Signalling (CAF)
Carlos Sicre Vara de Rey
Manuel Castro Vinas

Section 8,
contribution to 1-12

HaCon (HC)
Sandra Kempf
Rolf Gooßmann

Section 10,
contribution to 1-12

SIEMENS (SIE)
Stefan Wegele

Sections 1-7, 9, 11,12
contribution to 1-12

Contributor(s) Ansaldo STS (ASTS)
Gian Luigi Zanella
Matteo Pinasco

Sections 1- 12

AZD Praha s.r.o (AZD)
Martin Bojda
Michal Zemlicka
Martin Ruzicka

Sections 1- 12

Bombardier Transportation
(BT)
Martin Karlsson
Roland Kuhn

Sections 1- 12

Thales (THA)
Jean-Jacques Rodot
Jean-Yves Friant

Sections 1- 12

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 3 of 45

Executive Summary

This document provides a description of the Generic Application Framework and is directed

at the software architects and developers of Traffic Management applications in the Railway

industry.

The overall aim of the In2Rail project is to set the foundation for a resilient, cost-efficient,

high capacity and digitalised European rail network.

There are three In2Rail Work Packages relating to Intelligent Mobility Management (I2M). In

the first 12 months of the project requirements on Traffic Management Systems (TMS) from

the recent tenders, national and international projects were collected in D7.1 and D7.2. In

deliverable D8.1 requirements on Integration Layer and D8.4 requirements on Application

Framework were specified.

Starting working on the Integration Layer and having several prototypes done, the

participants came to a conclusion to use the Integration Layer as a communication platform

for the functionality of the Application Framework. The design and specification of the

Integration Layer will be published in D8.4 nine months after this deliverable. In this

document assumptions about the Integration Layer were made, which could be subject of

minor changes during this period.

First the experience with the Integration of Applications in different projects, and the

historical approaches for software integration as well as currently active projects for cloud-

intensive IT industry were analysed. The conclusion of this analysis was that the Application

Framework shall be able to express the desired state of deployment and applications states

on the Integration Layer and observe the current state on some other topics on the

Integration Layer. The specific implementation of the desired state is the responsibility of

ǘƘŜ ŦǳǘǳǊŜ ǇǊƻŘǳŎǘ ά!ǇǇƭƛŎŀǘƛƻƴ CǊŀƳŜǿƻǊƪέΦ

The second step comprised the identification of the information ǊŜǉǳƛǊŜŘ ƛƴ ǘƘŜ άŘŜǎired

ǎǘŀǘŜέ. The detailed specification of the data structures describing desired and current states

is provided in D8.7.

In the second part of the document (chapter 10) an important question about Integration of

User Interfaces provided by multivendor-applications was analysed. Although the current

trend in IT industry is moving to rendering of the application content by web browser and

providing HTML5/CSS3 based content from the cloud, it was assumed that in the near future

dedicated User Interfaces with high performance graphics will still be the main use case in

control centres.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 4 of 45

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3

GLOSSARY, ABBREVIATIONS AND ACRONYMS 6

1 BACKGROUND 8

2 OBJECTIVE / AIM 9

3 INTRODUCTION 11

4 APPLICATION FRAMEWORK REQUIREMENTS 13

4.1 STRUCTURE OF TMS APPLICATIONS 13

4.2 INTEGRATION PATTERNS IN APPLICATION FRAMEWORK 15

4.2.1 Integration by API 15

4.2.2 Integration of Executables 16

4.2.3 Integration of Virtual Machines 16

4.2.4 Integration of Containers 17

4.3 REQUIREMENTS 17

4.4 APPLICATION FRAMEWORK FUNCTIONS AND CONSTITUENTS 18

5 PRIVATE CLOUD MANAGEMENT SOFTWARE ON THE MARKET 19

6 CONTAINER MANAGEMENT ON THE MARKET 20

6.1 CLOUD FOUNDRY 20

6.2 OPENSHIFT 21

6.3 DOCKER UNIVERSAL CONTROL PLANE 22

7 ARCHITECTURAL DECISIONS 23

7.1.1 Identification and grouping of functions 23

7.1.2 Relevant data objects 23

7.1.3 Relevant object states 24

7.1.4 Deployment functionality 25

7.1.5 App-StartStop functionality 26

7.1.6 Monitoring functionality 27

7.1.7 Canonical Data Model for AF 28

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 5 of 45

8 INTEGRATION OF TMS APPLICATIONS IN ONE USER INTERFACE 31

8.1 OBJECTIVE OF USER INTERFACE INTEGRATION 31

8.2 EXISTING APPLICATION INTEGRATION PATTERNS 31

8.2.1 Approach a 32

8.2.2 Approach b 32

8.2.3 Approach c 33

8.3 COMMON VIEWS AND SCREENS IN TMS 33

8.3.1 Overview screen 34

8.3.2 Close-up screen 34

8.3.3 Portable screen 34

8.4 REQUIRED UI INTEGRATION PATTERNS 34

8.5 UI INTEGRATION APPROACH 36

8.6 USE CASES FOR UI INTEGRATION 39

8.6.1 Selection usage 39

8.6.2 Lazy starting 40

8.6.3 Rendering of remote content 42

9 CONCLUSIONS 43

10 APPENDIX A 44

11 REFERENCES 45

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 6 of 45

Glossary, Abbreviations and Acronyms

* Definition extract from §Common Glossary of the [IN2RAIL D7.1] deliverable of In2Rail.

Term Description

AF Application Framework

API Application Programming Interface

Application
Framework

It is a programming framework allowing plug-and-play integration
of multivendor applications into TMS.

COTS Commercial off-the-shelf

DDS Data Distribution Service ς an OMG standard.

ESB Enterprise Service Bus

IL Integration Layer

IM *

Infrastructure Manager: anybody or undertaking that is responsible
for establishing and maintaining railway infrastructure. This may
also include the management of infrastructure control and safety
systems. The functions of the infrastructure manager on a corridor
or part of a corridor may be allocated to different bodies or
undertakings.

I²M *

Intelligent Mobility Management: information developed as a
strategically critical asset:
Á A standardised approach to information management and

dispatching systems enabling an integrated Traffic Management
System (TMS).

Á An Information and Communication Technology (ICT)
environment supporting all transport operational systems with
standardised interfaces and with a plug and play framework for
TMS applications.

!ƴ ŀŘǾŀƴŎŜŘ ŀǎǎŜǘ ƛƴŦƻǊƳŀǘƛƻƴ ǎȅǎǘŜƳ ǿƛǘƘ ǘƘŜ ŀōƛƭƛǘȅ ǘƻ ΨƴƻǿŎŀǎǘΩ
and forecast network asset statuses with the associated
uncertainties from heterogeneous data sources.

IMDG
In Memory Data Grid: a software installed on one or several nodes
and provides reliable access and change notifications for key-value
pairs in presence of failures.

LCC Life Cycle Costs

Message semantic Definition of the meaning of every message attribute

Message encoding Representation of the message content in bits and bytes.

Node Computing entity: PC, server, Virtual Machine, Cluster.

QoS Quality of services

RCP Rich Client Platform

Reliable communica-
tion protocols

A set of messages to be exchanged between several partners which
ensures defined reliability properties in presence of failures and
message losses.

RTTP
Real Time Traffic Plan: the timeframe of the Daily Timetable
transferred from the IM planning department to the Traffic
Management Department.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 7 of 45

Term Description

RU *
Railway Undertaking: bodies such as train operating companies
and freight operating companies, which are responsible for the
operation of passenger and freight trains.

TCO Total cost of ownership

TOC *
Train Operating Company: a company with access rights to operate
passenger trains on the railway network.

TMS *
Traffic Management System: a traffic control-command and
supervision/management system, such as ERTMS in the railway
sector.

WP7
Work Package 7: System Engineering of Intelligent Mobility
Management (I²M) of In2Rail.

WP8
Work Package 8: Integration Layer of Intelligent Mobility
Management (I²M) of In2Rail.

WP9
Work Package 9: Intelligent Mobility Management (I²M) -
Nowcasting and Forecasting

UI User Interface

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 8 of 45

1 Background

This document represents the next step in system development after requirement

ǎǇŜŎƛŦƛŎŀǘƛƻƴ ƛƴ 5уΦр άwŜǉǳƛǊŜƳŜƴǘǎ ŦƻǊ ǘƘŜ DŜƴŜǊƛŎ !ǇǇƭƛŎŀǘƛƻƴ CǊŀƳŜǿƻǊƪέ in the

framework of the project enǘƛǘƭŜŘ άInnovative Intelligent Railέ όtǊƻƧŜŎǘ Acronym: In2Rail;

Grant Agreement No 635900). ¢Ƙƛǎ ǎǘŜǇ ƛǎ ǘȅǇƛŎŀƭƭȅ ǊŜŦŜǊŜƴŎŜŘ ŀǎ άIƛƎƘ [ŜǾŜƭ 5ŜǎƛƎƴέ ƛƴ ±-

Model software development (see Figure 1.1).

Figure 1.1: Location of this document in the Software-Development process

The WP8 activity is integrated into the development process with WP7 (see Figure 1.2).

Figure 1.2: Simplified view on integration of WP8 and WP7

The WP8 consists of two main parts the Integration Layer and the Application Framework.

The Integration Layer represents the communication platform for applications to be

integrated into TMS. It will specify the API to access data (publish and subscribe) as well as

the data structures persisted and distributed by the Integration Layer. The set of data

structure specifications for Integration Layer is called άŎŀƴƻƴƛŎŀƭ Řŀǘŀ ƳƻŘŜƭέ ŀŎŎƻǊŘƛƴƎ ǘƻ

the ESB term for common message formats.

The canonical data model will provide an additional specification to allow easy extensions

for future applications in TMS and railway industry in general.

WP8
Generic Application
/Integration Layer

WP7.3
Proof-of-Concept

WP7.1
Requirement
Analysis

Requirement

analysis

High level design

Detailed

specifications

Coding

Unit

testing

Integration

testing

Operational

testing

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 9 of 45

2 Objective / Aim

As part of the In2Rail project, the ǿƻǊƪ ǇŀŎƪŀƎŜ άLƴǘŜƭƭƛƎŜƴǘ aƻōƛƭƛǘȅ ƳŀƴŀƎŜƳŜƴǘ ς

Integration Layerά shares two major objectives:

1. Reducing Life Cycle Costs (costs for development, deployment, execution and

maintenance of the software) for Traffic management systems,

2. Enabling new intelligent functions for overall optimisation of the traffic process.

To achieve the cost reduction two main cost drivers must be considered:

Á Integration efforts ς integration of a new software application/module currently

requires the development of interface gateways introducing costs for:

- Interface clarification,

- Software for message conversion and aggregation, object id mapping etc.,

- Development/establishment of proprietary reliable communication protocols

- Testing, versioning, and configuration of the gateways;

Á Absence of a standardised development platform requires each application vendor to

ǊŜǇŜŀǘŜŘƭȅ ǎƻƭǾŜ άƘƛƎƘ ŀǾŀƛƭŀōƛƭƛǘȅέ ŀƴŘ άƘƛƎƘ ǇŜǊŦƻǊƳŀƴŎŜέ ƛǎǎǳŜǎΦ ¢Ƙƛǎ ǊŜŘǳŎŜǎ

possible vendor market and often requires extensive amount of hardware, as each

application is delivered by a vendor with redundant hardware components.

As a consequence of both cost drivers preventing fine modularisation of the software big

monolithic applications developed by few vendors cover most of the TMS market.

The first cost driver is addressed by the Integration Layer which provides standardised

Interfaces (API), Messages (semantic and serialisation), reliable communication protocols.

The second cost driver is covered by the standardised Application Framework, which

provides additional services for:

Á Resource management to solve high availability issue;

Á Central monitoring and configuration to alƭƻǿ ƻƴŜ άǎȅǎǘŜƳέ ǾƛŜǿ ƻƴ ǘƘŜ ŘŜǇƭƻȅŜŘ

components.

The second of the listed above objectives (enabling of new intelligent functions) is addressed

by both IL and AF:

Á IL allows easy access to standardised information available in TMS, required by future

intelligent functions;

Á AF allows development of light weight Apps (not full blown applications) managed by

AF-services.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 10 of 45

Both components (IL and AF) are very ambitious from the software point of view. The

required functionality can be covered by different existing software solutions on the market

to a large extent. Unfortunately, neither the existing solutions provide a standardised API

nor does an agreed set of data structures for TMS applications exist. Therefore, the overall

objective of WP8 is to provide a specification of API and the Canonical Model (see Figure

2.1).

Figure 2.1: Integration of TMS Applications into In2Rail platform (IL and AF) providing a Wrapper to COTS-

software and Canonical Data model

The specification is split into two modules:

Á The Integration Layer specifies:

- API for accessing the communication platform and

- Canonical data model for communication with TMS applications.

Á The Application Framework specifies only the canonical model for resource

management.

To give an idea about the functional separation, an existing application server in Java-

domain can be considered:

Á The IL corresponds to the JMS (Java Messaging Service) of the application server;

Á The AF corresponds to all the other parts ς Registry, Container-management, Cluster-

Management, etc.

As the separation of concepts into Communication and Application Platform already takes

place in real world, the same approach seems to be reasonable in the context of the IN2RAIL

project.

COTS data communication and data
management platform
e.g. In Memory Data Grids (Infinispan,
Hazelcast, Redis), Data Distribution
Service

COTS Resource management
(e. g. Pacemaker, CloudFoundry,
OpenShift Origin) or
IL-based implementations

In2Rail API + Canonical model for objects

TMS app 1 TMS app 2 TMS app 3

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 11 of 45

3 Introduction

The first assumption for the specification of the Application Framework (AF) is, that the

Integration Layer (IL) is defined and ready to use. The AF shall be based on the IL and provide

additional services with the aim of offering a plug-and-play platform for light weight

applications.

¢ƘŜ !ǇǇƭƛŎŀǘƛƻƴ CǊŀƳŜǿƻǊƪ ǇǊƻǾƛŘŜǎ ŀ άǎȅǎǘŜƳ ǾƛŜǿέ ƻƴ ŀ ǎŜǘ ƻŦ light weight applications

originating from different vendors. It allows systematic:

Á Deployment;

Á Configuration;

Á Monitoring;

Á management including fail-over, maintenance, load balancing, etc.;

Á Removal;

of the applications managed by the AF.

In the following, the combination IL + AF is referenced as the IN2RAIL-platform.

Let us consider the process of evolution from current TMS-applications to the IN2RAIL-

platform-based future. Current TMS applications are full blown software products containing

their own proprietary resource management, therefore the first step would be integration of

existing applications by means of IL (see Figure 3.1).

Figure 3.1: Integration of legacy systems by the mean of IL only

As long as the cooperating systems manage their availability themselves and support

different departments with their own system administrations, a central management,

monitoring and configuration of the entire system is often not required. In this case the

Application Framework can be omitted.

IL: API and Canonical model for TMS data

Offline timetable

planning system

Dispatching system Operations control

system (safety)

Passenger

Information System

Crew
management

system

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 12 of 45

In the future it is assumed that TMS will be created by many Apps representing a form of

microservices design pattern and originating from different vendors (see Figure 3.2). In this

case the usage of an Application Framework is inevitable.

Figure 3.2: Integration of light-weight Apps by the means of AF

In such a deployment the Application Framework manages the light-weight Apps and

provides central monitoring and configuration functionality.

AF: Container management

App1

IL: API and Canonical model for TMS data

App2

Big Application

1

App3

Big Application

2

AF: Monitoring AF: Configuration

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 13 of 45

4 Application Framework requirements

To identify the requirements of the Application Framework (AF) first the applications that

shall be managed by the AF and used integration patterns were analysed.

4.1 Structure of TMS applications

The TMS applications are structured around the data in real time. The major data blocks are

shown in Figure 4.1.

Figure 4.1: Main data blocks in a TMS

The TMS applications provide following general functionality:

Á Represent the data from the above modules to the users (10-50 per control center);

Á Receive user input (routing commands, timetable modifications, workflows with RUs

etc.), implement input validation by calculating forecasts and provide decision

proposals.

The representation of such large amount of data in the frame of high performance graphics

on (often) eight monitors currently requires installation of a client computer with sufficient

hardware resources (e.g. Intel i3-processor with 16 GB RAM). The client hardware often

supports some part of safety functions, e.g. providing safe track view.

The server functionality is typically divided into safety relevant and timetable related parts.

The number of servers is constant during the day.

Real time traffic

plan

Infrastructure

Maintenance plan

Rolling stock to trip

assignment

Crew to trip

assignment

Process image

Energy plan

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 14 of 45

In many existing installations the operators are working on the shared Real Time Traffic Plan

(RTTP) containing planned train movements, train connections, planned possessions and

restrictions and covers between 8 and 72h. This RTTP for a medium sized network is 1-2

GByte. Any modifications of RTTP shall be automatically analysed by a forecast algorithm

and the result of such analysis shall be represented to the users.

Even with this simple case the amount of network communication is quite large: one shared

forecast with about 1-2 GBytes shall be distributed to 30-50 workstations during less than

one second. hŦǘŜƴ ōŀǎƛŎ ŀƴŀƭȅǎƛǎ ƛǎ ŘƻƴŜ ƻƴ ǘƘŜ ƻǇŜǊŀǘƻǊΩǎ ǿƻǊƪǎǘŀǘƛƻƴ ŀƴŘ ǘƘŜ ŘŜǘŀƛƭŜŘ

forecasting is done after application of the changes on the shared RTTP on one powerful

server, managing RTTP.

To be able to manage such amounts of data each workstation is typically provided with a

cache of the shared RTTP and only delta-information is transmitted.

¢ƻ ōŜ ŀōƭŜ ǘƻ ǊŜǇǊŜǎŜƴǘ ǘƘŜ ŎǳǊǊŜƴǘ ŦƛŜƭŘ ǎǘŀǘŜ ǘƘŜ ƻǇŜǊŀǘƻǊΩǎ ǿƻǊƪǎǘŀǘƛƻƴ ƛǎ ǇǊƻǾƛŘŜŘ ǿƛǘƘ a

cache of the Process Image (train positions, switch positions, currently active restrictions,

possessions etc.).

In future applications (e.g. in recent tender from BaneNOR) the operators will be able to

analyse their modifications in a sandbox, i.e. each ƻǇŜǊŀǘƻǊ ǿƛƭƭ ƘŀǾŜ ƘŜǊ ƻǿƴ άŎƻǇȅέ ƻŦ w¢¢t

and shared Process Image. ²ƛǘƘ ŎǳǊǊŜƴǘ ŀǊŎƘƛǘŜŎǘǳǊŜ ƻŦ ǘƘŜ ƻǇŜǊŀǘƻǊΩǎ ǿƻǊƪǎǘŀǘƛƻƴ ǘƘŜ !C

ǎƘŀƭƭ ōŜ ŀōƭŜ ǘƻ ƳŀƴŀƎŜ ƴƻǘ ƻƴƭȅ άŀƴƻƴȅƳƻǳǎέ ƘŀǊŘǿŀǊŜ ŜȄŜŎǳǘƛƴƎ ǎŜǊǾŜǊ ŦǳƴŎǘƛƻƴǎ, but

also the dedicated nodes for each workstation.

A general architectural pattern for TMS-services is shown in Figure 4.2. The TMS-service

observes a set of Topics (1-3) in advance, receives its requests from one of the topics and

publishes its results on some other topics.

Figure 4.2: General architecture of a TMS service

TMS service

Topic1

Request

topic

Topic2 Topic3

Topic4

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 15 of 45

4.2 Integration patterns in Application Framework

As the second step the integration patterns available for the applications were analysed.

4.2.1 Integration by API

This kind of integration provides the highest performance ς instead of sending messages

over the localhost-interface direct programming calls are applied. Especially for small

messages the performance improvement is by a factor of twenty.

Historically one of the main concerns during specification of CORBA [OMG CORBA] was the

transparency between local and remote object invocation: the client application calls a

method of an object without knowing, if it runs in the same process, on the same node or on

a remove machine. This allows the flexibility for allocating the modules on different nodes

(remote), starting as independent programs (remote) or loading as dynamic libraries (local)

per configuration. This logic is still used in several Application Servers, as they use CORBA

protocols for internal communication.

A similar implementation is provided by ZeroC-Internet Communication Engine (ICE) with the

module IceBox (see Figure 4.3).

Figure 4.3: Collocated invocations inside of one executable in ZeroC-ICE

The IceBox ƭƻŀŘǎ ŘȅƴŀƳƛŎ ƭƛōǊŀǊƛŜǎ ŀƴŘ ŎƻƳƳǳƴƛŎŀǘŜǎ ǿƛǘƘ ǘƘŜƳ ǳǎƛƴƎ άǊŜƳƻǘŜέ ǇǊƻǘƻŎƻƭΦ

All modules loaded into one IceBox communicate with each other by means of local calls.

The DDS implementation OpenSplice provides a similar way for integrating services.

In TMS applications a typical use case is the run time calculation module (see Figure 4.4).

Middleware

DLL module 2 DLL module 1

Executable process

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 16 of 45

Figure 4.4: Integration of Runtime calculation service by API

Often each Railway company has its own train dynamics database with preferred run time

calculation algorithms, which often already exists a dynamic library.

It is assumed that the API based integration is limited to special cases like the example

shown above. The Integration Layer will provide enough bandwidth to enable Integration of

general TMS applications. Therefore the API-based integration was excluded from the

Application Framework.

4.2.2 Integration of Executables

An executable can be represented as an archive containing all required artefacts to start an

application from an operating system by one command. For deployment of such applications

packet managers are used, e. g. apt (dpkg) in Debian based Linux.

It is assumed that creating a Container from an Executable is a relatively easy task. In

comparison to bare executable the container technology provides so many advantages,

especially a much better isolation of the concurrently running applications in CPU, RAM and

Network usage, that it was decided to exclude Integration of Executables from Application

Framework.

4.2.3 Integration of Virtual Machines

At the current state of IT the Virtual Machines represents a highly reliable technology for

isolation of Applications. Assuming a multivendor TMS the Infrastructure Manager can have

a full control on the software modules running in his data centre.

It is assumed the VM to be in the near future the most used way for integration of TMS

applications, therefore it shall be included into the Application Framework.

Runtime

calculation

Train

dynamics

Track

dynamics

Speed

restrictions

Train
speed and position

at time T1

Train
speed and position

at time T0

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 17 of 45

4.2.4 Integration of Containers

Containers represent a light weight virtualisation technology, where the software in

containers is running under the same operating system. The isolation of the processes is

implemented by means of the host operating system. In the context of Open Container

Initiative the interfaces for the management of containers will be standardised. Several

platforms on the market support the management of Container Integration [Openshift

2017], [CloudFoundry 2017], [Kubernetes2017] having different approaches of integration.

It is assumed that in the future the innovative TMS applications with short deployment

cycles will be integrated by Container Virtualisation. Therefore they should be included into

the Application Framework.

4.3 Requirements

It is assumed that TMS applications will be provided either as Virtual Machines or as

Container therefore the word Application means an application delivered as Virtual Machine

or Container.

It is assumed that one TMS application can contain one or more TMS services.

The requirements from TMS applications are:

Á The TMS services are stateful with a state of 1-3 GB in RAM. They must be provided

with caches before they can start to handle user requests;

Á The required failover time in some projects is smaller, than the time needed for

cache transmission. Therefore if required the services must be pre-started in hot-

standby mode;

Á It must be ensured, that only one instance of a service is able to write to specific

topic on IL to ensure that decisions are only made in one place. This functionality can

be implemented on the services themselves or provided by Application Framework.

The responsibility of the Application Framework is:

Á Deploy TMS application on some execution environment;

Á Manage start on demanŘ ōȅ ƻōǎŜǊǾƛƴƎ άǊŜǉǳŜǎǘ ǘƻǇƛŎǎέ ŀƴŘ by timer;

Á Manage service failover by means of hot and warm standby;

Á Manage service leader: from several running instances of a service with identically

configured inputs and outputs only one is allowed to write to the output topics. A

new leader is selected only if the previous leader has crashed;

Á Application Framework manages TMS applications on backend servers and dedicated

ƻǇŜǊŀǘƻǊΩǎ ǿƻǊƪǎǘŀǘƛƻƴǎ ŀǎ ǿŜƭƭΦ

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 18 of 45

4.4 Application Framework Functions and Constituents

The Application Framework is a product which will be provided by an external vendor. The

vendor can take any existing implementation on the market as a basis and extend it as

needed to be able to fulfil the requirements of the AF.

In the context of this document it is intended to specify only a set of data structures, needed

to represent the desired state of the managed TMS services and to observe the current state

of TMS services. The responsibility of the Application Framework as a product is to

implement the desired state and to provide the current state of TMS in specified data

structures on the Integration Layer.

In the AF-data structure the term Node is used, which is either the data centre cluster for

ǊǳƴƴƛƴƎ ±ƛǊǘǳŀƭ aŀŎƘƛƴŜǎ ƻǊ /ƻƴǘŀƛƴŜǊǎΣ ƻǊ ǘƘŜ ƻǇŜǊŀǘƻǊΩǎ ǿƻǊƪǎǘŀǘƛƻƴΦ

To provide monitoring functionality independent from used COTS-Container-Management

and allow tight integration into TMS, the states of the Nodes, Applications, and Services shall

be published on Integration Layer using standardised data structures.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 19 of 45

5 Private cloud management software on the market

Assuming that in the near future the TMS applications will be integrated into Application

Framework as Virtual Machines the Application Framework shall be able to distribute and

manage them on a cluster of nodes ς cloud. The cloud could be private in the case where the

nodes are located and belonging to the Infrastructure Manager (IM) or the IM could rent a

cloud from an external cloud provider.

There are several solutions on the market for building and managing private clouds:

Á System Center Virtual Machine Manager (VMM) as a management tool for Hyper-V

from Microsoft [MS VMM 2017];

Á vCloud Suite from VMware [VMW 2017];

Á CloudPlatform from Accelerite [ACCP 2017] (former Citrix product);

Á CloudForms from Red Hat [RH CF 2017].

In addition to these tools there are numerous third-party products that provide additional

capabilities, such as multi-platform support, the ability to reclaim wasted space, and virtual

machine monitoring for optimal performance. Examples are as follows:-

Á VMTurbo Operations Manager Cloud Edition [VMT 2017];

Á Embotics vCommander Enterprise Cloud Management Software [EMB 2017];

Á Solarwinds Virtualization Manager [SWVM 2017].

Considering the volume of different tools it is assumed that the AF-Vendor would be able to

create a small wrapper, which is able to use the desired state represented on the Integration

Layer to create commands on the Command Line Interface provided by most of these cloud

management tools.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 20 of 45

6 Container management on the market

 Containers include the application and all of its dependencies - but share the kernel with

other containers, running as isolated processes in user space on the host operating system.

As an application can be provided in form of container the next sections show the container

management software on the market.

6.1 Cloud Foundry

The open source project CloudFoundry (CF) provides a Platform as a service (see Figure 6.1)

[Winn 2017]. Lǘ ƛǎ ƭƻŎŀǘŜŘ ƻƴ ǘƻǇ ƻŦ ŀƴ άLƴŦǊŀǎǘǊǳŎǘǳǊŜ ŀǎ ŀ ǎŜǊǾƛŎŜέ-provider and simplifies

container management. The system integrator can push a container into CF, configure

connections to CF-services (like databases, middleware, etc.) and define how many instances

of the container shall run. The CF ensures that the configuration is implemented even in case

of failures (hardware or software).

Figure 6.1: Cloud Foundry layers [Winn 2017]

CF defined an interface to Infrastructure as a Service provider (Cloud Provider Interface),

which allows usage of many different hardware providers as well as dedicated hardware.

The BOSH module manages virtual machines (creating, movement, deleting) and installation

of the CF-components as distinct software (e.g. Databases, User management, etc.).

Cloud Foundry supports the software development process including building, deploying,

monitoring, managing user access and authentication, logging, failover etc. The applications

Ŏŀƴ ōŜ άǇǳǎƘŜŘέ ǘƻ ǘƘŜ /C ŜƛǘƘŜǊ ŀǎ ŀ ǎƻǳǊŎŜ ŎƻŘŜ ƻǊ ŀǎ ŀ ŎƻƴǘŀƛƴŜǊΦ

The CloudFoundry requires from the Application a set of requirements ς the twelve factors

contract. Some of them are listed here:

Á Stateless ς containers are not allowed to store anything on container disk;

Á Logging must be implemented through standard streams;

Á Configuration of the container at runtime is done by environmental variables.

IaaS/Hardware

Cloud Provider Interface

BOSH

Cloud Foundry

App 1 App 2 App 3

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 21 of 45

CloudFoundry provides Applications with additional services using environment variables:

Á Data base management systems (Redis, MySql, Postgresql);

Á Message Bus (NATS);

Á In Memory Data Grid (e.g. Hazelcast on Pivotal CloudFoundry).

Additional services can be integrated by CF-provider as required. The services are started

and managed on dedicated Virtual Machines by the Bosh module. The Applications

implement only the business logic ς the data management modules are provided by the

CloudFoundry.

6.2 Openshift

Openshift is a similar project by Redhat Inc [Openshift 2017]. It has several subprojects:

Á Openshift online with commercial platform provided by Redhat;

Á Openshift origin is an open source project.

It is based on Container management software Kubernetes by Google. It tries to make

container creation and management transparent to the software development. The

developer configures her source code project and manages it in the Openshift project in the

same ways as with versioning system (see Figure 6.2). Openshift even uses Git as a part of

the interface.

Figure 6.2: Schematic overview of Openshift

In addition it provides commands for monitoring, archiving/backup, movement of projects

between development, test and production environments.

Source code

(e.g. Java)

Openshift

push

Project config create

Run config

compile

linking

DBMS

driver
creating
container

Run/stop

Java VM

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 22 of 45

6.3 Docker Universal Control Plane

Docker Universal Control Plane (UCP) is an add-on component of the product Docker

Enterprise Edition. [Docker 2017]. It provides an enterprise-grade cluster management with

the following functionality:

Á Monitoring of the cluster nodes (CPU load, memory, services, containers, etc);

Á Centralised cluster management (adding/removal nodes);

Á Deployment, management, and monitoring of applications and services.

Access to the UCP is controlled by build-in authentication mechanism or by integration of

LDAP services.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 23 of 45

7 Architectural decisions

It is not the aim of IN2Rail project to specify and develop a new container management

within the Application Framework. The objective is to use existing implementations as much

as possible and provide a narrow wrapper to separate them frƻƳ άƭƻƴƎ-ǘŜǊƳέ ŀǇǇƭƛŎŀǘƛƻƴǎ ƛƴ

the railway domain.

Architectural decisions are derived using the following approach:

Á Identification of required functions and grouping them to άŦǳƴŎǘƛƻƴŀƭƛǘƛŜǎέ;

Á Identify information flows required by the functions (Topic structures);

Á Define data structures needed for implementation of the required functions.

7.1.1 Identification and grouping of functions

The single functions of the Application Framework can be grouped together (see Figure 7.1).

Figure 7.1: Application Framework functionalities

In the context of IN2RAIL the following decisions were made:

Á Integration Layer covers all communication aspects between TMS and Application

Framework;

Á The required data structures (messages) are specified as part of Canonical Data

model.

In this sense the AF is an optional add-on to the IL-specification.

7.1.2 Relevant data objects

In the existing projects different words may refer to similar things. Therefore the used

terminology shall be introduced before the functionality description.

App: as already mentioned in Section 4.2.3 and 4.2.4 as integration entity either a Virtual

Machine or a Container is considered. The name App is used as abbreviation of Application

under the meaning VM or Container.

Deployment

functionality

- install

- update

- remove

StartStop

functionality

- start

- passivate

- stop

Monitoring

functionality

- publish service

states

Application Framework Constituents

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 24 of 45

Service: is a functionality which reads and/or writes to Topics on the Integration Layer. It is

assumed that one App provides one or more services.

Node: an execution unit ς can be a computer (e.g. an operaǘƻǊΩǎ ǿƻǊƪǎǘŀǘƛƻƴύ, or the entire

data centre, if AF is managed by existing cloud based projects (CloudFoundry, Openshift,

Kubernetes, etc.).

7.1.3 Relevant object states

App

The concept of App has two aspects:

Á Deployment: create an accessible copy, which can be started on a Node;

Á Start/Stop: actual activation of an App, which is similar to starting/stopping of an

executable.

Service

As the service is a part of an App, it does not require special handling for deployment. The

only relevant states are:

Á Started;

Á Stopped;

Á Passive ς ready to start writing to Topics (hot standby).

Node

To be able to handle cloud infrastructure it is assumed, that the Application Framework is

able to start and stop nodes according to some logic for the sake of

Á Energy saving;

Á Cost saving in the cloud environment;

Á Hardware maintenance;

Á Tests.

In the following the functionalities required from Application Framework were analysed. As

a result data topics on Integration Layer needed for implemention of the Application

Framework were provided.

In the following many the states and objects are noted by their identifier. The άCamelCaseέ

notation is used for combing words to an identifier; e. g. the Topic with identifier equal to

DeploymentState contains data structures representing the deployment state of the

applications.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 25 of 45

7.1.4 Deployment functionality

The deployment function has the following responsibilities:

Á Ensuring that the configured Applications are installed on the configured Nodes from

configured repositories;

Á Handling of the changed software version shall depending on the configuration:

- if required, the old version is uninstalled before installing the new version,

- the new version of an application shall be installed,

- if required, the old version is uninstalled after installation,

- concurrent usage of two versions in one Application Framework must be

supported;

Á Uninstalling the software first, requests to stop all running services, observation of

this behaviour, and if finished, removal/archiving of the old version.

The deployment function shall observe the άŘŜǎƛǊŜŘ ŘŜǇƭƻȅƳŜƴǘ ǎǘŀǘŜέ ƻƴ ǘƘŜ ƴƻŘŜ and

compare it with the actual node state (see Figure 7.2). As soon as a discrepancy occurs, it

shall implement changes in each node. A central logic is not required. Therefore, on each

node a Deployment process can be started.

Figure 7.2: Information flow for Deployment Service

The DeploymentService is running on each node and subscribes to the following Topics:

Á AppConfig Topic contains configuration of the App, like required OS, RAM, CPU,

provided services etc.;

Á DeploymentState Topic contains currently installed Apps assigned to Nodes;

Á DesiredDeploymentState Topic contains the next deployment state to be achieved by

AF;

AppConfig

Topic

DeploymentState

Topic

DeploymentService

(on each node) Desired

DeploymentState

Topic

NodeState

Topic

DeploymentState

Topic

DesiredAppState

requests

Topic

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 26 of 45

Á NodeState Topic contains the load and life statistics of each Node managed by AF

(running since DateTime, current CPU load, free RAM, etc.)

The DeploymentService writes to:

Á DeploymentState Topic to publish the newly installed/uninstalled Apps on the node

managed by DeploymentService-instance;

Á DesiredAppState-Requests Topic is used to publish request to stop Apps on specific

nodes before uninstalling Apps on it.

The detailed use cases are specified in D8.7.

7.1.5 App-StartStop functionality

The App-StartStop function shall start and stop deployed Apps depending on:

Á Desired AppStates requests coming from outside (user command, deployment

service etc.);

Á Data published on configured topics;

Á Timeouts.

In case of problems (e.g. missing access rights, wrong data types, etc.) the App publishes the

errors on App-StartStop-Errors topic.

! ŎǊǳŎƛŀƭ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ǊŜǇǊŜǎŜƴǘǎ ŀ άǎƛƴƎƭŜǘƻƴέ-pattern ς the ServiceStartStop function shall

ensure that only one instance of a service is able to publish in IL, if configured so. In the case

of a program crash it shall decide on the node where the function shall start.

A typical use case for a singleton is a service collecting timetable change requests from

operators, validating them and putting them into a unique sequence. Two such active

services ŎƻǳƭŘ ŎǊŜŀǘŜ ŘƛŦŦŜǊŜƴǘ άǎŜǉǳŜƴŎŜǎέ as they receive modification requests

asynchronously.

Potentially singleton function can be implemented by a distributed consensus algorithm

inside of the Apps [Cachin et.al.2006]. To simplify the implementation it is assumed, the logic

behind StartStop-Decisions will be active in only one central instance (StartStop Controller).

The central instance will publish its decisions (see Figure 7.3), which will be implemented by

special processes on each Node (AppStartStop Service) (see Figure 7.4).

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 27 of 45

Figure 7.3: Information flow for StartStop Controller deciding which App and service shall run on which Node

Figure 7.4: Information flow for AppStartStop-Service implementing the Leader-Decisions on each Node

Only configured Apps will be managed by AppStartStop-Function. All the others can be

managed independently and cooperate with each other by mean of the IL only.

The services specified here represent only one possible implementation. In the context of

this document only a specification of the Information-Topics and Message-Types is required.

7.1.6 Monitoring functionality

Monitoring function publishes states of nodes and services on IL. It shall be independent

from the existence of other AF-Functions. Therefore:-

Á Apps states shall be published by Apps on AppState-Topic.

DesiredAppState

Topic

DeploymentState

Topic

StartStop Controller

AppState Topic

NodeState

Topic

DesiredAppState

requests

Topic

DesiredAppState

Topic

AppStartStop

Service

DeploymentState

Topic

AppState

Topic

AppState

Topic

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 28 of 45

Publishing other states:

Á Node resource states (Performance monitoring: CPU, Bandwidth, RAM) shall be

published by NodeManagement-service;

Á DeploymentStates shall be published by each instance of DeploymentService.

7.1.7 Canonical Data Model for AF

The Canonical Model has two main aspects:

Á It provides a way to navigate the model by composite relations (child-parent);

Á It specifies the attributes in detail to be used for serialisation and data management.

The AF-Part of the Canonical model has its Ǌƻƻǘ Ŏƭŀǎǎ ά!Cέ ς abbreviation for Application

Framework.

It manages Nodes and Apps using configuration and state-data (see Figure 7.5).

Figure 7.5: UML Class diagram for Deployment, StartStop and Monitoring services

In the class diagram of Figure 7.5 the classes DeploymentAppState, RunAppState and

NodeState participate in two composition relations to each Node:

Á As currentXXXState and

Á As desiredXXXState.

AppConfig

AF (ApplicationFramework)

ServiceConfig

RunAppState

RunServiceState

Deployment

AppState

Node

NodeState

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 29 of 45

That means the Node has e. g. an attribute with name currentRunAppState and

desirecRunAppState referencing objects of the same Class RunAppState. The same is valid

for NodeState, DeploymentAppState.

This reduces the number of required classes and simplifies the services comparing desired

and current states.

In the following the classes in the AF-CDM will be specified in detail.

7.1.7.1 AF.AppConfig

For an Apps different attributes shall represent in CM:

Á Version;

Á Vendor;

Á Available services (s. ServiceConfig);

Á Runtime dependencies from other services;

Á Deployment dependencies from other Apps (typically not needed, as an App shall be

able to operate alone);

Á Node requirements (OS, RAM, CPU, Bandwidth);

Á Application UUID.

7.1.7.2 AF.AppConfig.ServiceConfig

A service represents a functional unite which reads from and writes to Topics in the

Integration Layer.

A ServiceConfig shall specify:

Á Topics which it is able to listen to including Quality of services (QoS);

Á Topics which it is able to write to including QoS;

Á Starting strategy: singleton vs. non-singleton. Typically it shall ensure that only one

instance is able to write to a specific topic ς ŀǎ ƭƻƴƎ ŀǎ άǿǊƛǘƛƴƎέ ǘƻǇƛŎǎ ŀǊŜ ŘƛŦŦŜǊŜƴǘ,

ǎŜǾŜǊŀƭ ƛƴǎǘŀƴŎŜǎ ƻŦ άǎƛƴƎƭŜǘƻƴέ-services can be started;

Á Load-balancing strategy: any, max networks, max CPU, max RAM or weighting factors

for these aspects;

Á Logging level.

The ServiceConfig can reference Topics specified in the Integration Layer (standard topics) or

specify its own Topics as well as data types.

7.1.7.3 Node.desiredDeploymentAppState

The NodeConfig represents the desired state of the Node and shall contain:

Á List of Apps to be deployed with the deployment state (installed, archived).

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 30 of 45

7.1.7.4 Node.currentDeploymentAppState

It represents the installation status of an App on a Node. Possible values are

installed/installing/deinstalling/archiving/archived.

7.1.7.5 Node.currentRunAppState.ServiceState

It represents the current state of the service: running/stopped/passive. The state can be

extended by:

Á runningState: running/stopped/passive;

Á Load % (activeTime/totalTime);

Á Active/Inactive;

Á Communication statistics (per Topic);

Á Current Logging level.

7.1.7.6 Node.desiredRunAppState.ServiceState

It represents the desired service states assigned to nodes ς which service shall be in which

state at which node. The values are coming either from NodeManagementLeader or e.g. an

administrator UI/command line interface.

Using this class independent from the Node allows a request for new Nodes to be started in

a Cloud, if such functionality is required.

7.1.7.7 Node.currentNodeState

It represents a load state of the Node to be used by NodeManagementLeader for load

balancing. It shall contain:

Á CPU load, %;

Á Available RAM, GB;

Á Available persistence space (for logging/deployment);

Á Used bandwidth MB/sec;

Á Available bandwidth MB/sec.

7.1.7.8 Node

Besides the mentioned composite-attributes it contains only the ID and allows specification

of simple keys /AF/node[238]/nodestate. The main purpose is to simplify

subscription/management of the key-values in IL.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 31 of 45

8 Integration of TMS Applications in one user interface

8.1 Objective of User Interface Integration

The main functionality of AF is container management. Integration of TMS-Application into

one user interface does not belong directly to the container management. The missing

approach for UI integration can prevent the splitting of TMS-functionality into modules and

thereby making IL and AF obsolete. In recent tenders and projects the IMs insisted on having

one TMS-system with shared menus and navigation bars, consistent navigation between

views and a common look and feel.

Considering the current market, the TMS functionality is split in bigger modules ς each

covering all requirements of the corresponding user of the module: operator, dispatcher,

timetable planner, RU-portal, maintenance manager, etc. In many cases, these roles require

non-overlapping functionalities; therefore, they can be managed by software products from

different vendors with a slightly different look and feel.

It is assumed that the future TMS-Applications will concentrate not only on traffic control,

but also on traffic optimisation. Supported by optimisation algorithms the human users will

have to consider more aspects in their decisions. More aspects automatically mean having

more integrated applications in one UI, e.g. dispatching decisions could depend on the

current state of the energy system requiring UI-integration of both applications.

In the following sections possibilities and requirements of integrating TMS applications into

one UI were analysed. The issue of integration is not restricted to TMS ς as the entire IT

industry has been faced with it for the last 30 years. One of the well known solutions is

COM/ActiveX-technology integrated in Microsoft Windows since 1996. It is not intended to

solve this issue in this deliverable with a solution covering several programming languages,

running on different operation systems and covering rising use of cloud technology to

provide remote UIs.

The objective is to provide an optional, basic integration mean for UI integration of future

TMS-applications.

8.2 Existing application integration patterns

An application is usually specified in three layers: the data layer, the business logic and the

user interface layer.

The integration of applications in general can be realised in three different levels (see also

Figure 8.1):

a. Integration on the data source level, this means the data sources are integrated and

a common business logic and user interface is developed;

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 32 of 45

b. Integration on the business logic level, this means an integration of the business logic

and on top of the integration a common user interface is developed;

c. Integration on the user interface level, this means an integration of several user

interfaces.

Figure 8.1: Different levels of integration

Regarding the TMS integration, the following solutions can be mentioned.

8.2.1 Approach a

Integration on the data source level is implemented by IL already as all applications use

shared data source provided by it.

8.2.2 Approach b

Integration of different business logics into one common user interface seems to be the next

step in evolution of TMS applicationsΣ ǿƘŜǊŜ ŜȄƛǎǘƛƴƎ άōƛƎέ ŀǇǇƭƛŎŀǘƛƻƴǎ ǿƛǘƘ Rich UIs are

extended by Apps coming from different vendors (see Figure 8.2). Especially decision

support functions could be implemented in this way.

Figure 8.2: LƴǘŜƎǊŀǘƛƻƴ ƻŦ άōƭŀŎƪōƻȄŜǎέ ǇǊƻǾƛŘƛƴƎ ōǳǎƛƴŜǎǎ ƭƻƎƛŎ ƻƴƭȅ

Big TMS application

(e.g. Dispatching)

dispatcher

App 2 App 1

Integration Layer

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 33 of 45

A reasonable way could be the specialisation of some vendors to deliver only UI and keeping

all business functions separated running in the AF (see Figure 8.3). To enable this kind of

integration no additional specifications are required:the IL provides Topics with data to be

represented and Topics for modification requests. The UI application shall be able to

represent the first and to write to the second Topics. The information transformation

between these Topics can be done by backend applications without UI. This approach is

possible because many Views in TMS are more or less de facto standardised as follows in the

next sections.

Figure 8.3: UI-App to represent topics and publish requests

8.2.3 Approach c

The last kind of integration is the most challenging one. To ensure a full UI integration the IT

industry created the concept of a RCP (Rich Client Platform). Existing implementations are

limited to one programming language enabling the integration on the binary level: one

module calls another module synchronously using binary calls. It is not intended to

standardise such infrastructure, but only to provide additional topics on IL to allow

asynchronous information exchange. This restriction influences possible UI integration

patterns quite strongly.

In the following common views in TMS to identify required integration patterns are shown.

8.3 Common views and screens in TMS

Within Task 7.2 of In2Rail the Standardised Operators Workstation has already been

specified. During this study the required hardware of a future TMS as well as the views of

the user interface for specific roles have been addressed.

App 1 (UI)

App 5 App 4

Integration Layer

App 3 App 2

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 34 of 45

In deliverable 7.3, it is proposed that the standard TM workstation consists of three screens,

named:

a. Overview screen;

b. Close-up screen;

c. Portable screen.

In which every screen has its own layout structure.

8.3.1 Overview screen

The overview screen is the main screen to display available information. The layout of views

is pre-defined for each role, but the layout of the views is configurable.

8.3.2 Close-up screen

The close-up screen is a touchscreen and, next to keyboard and mouse, it should be used to

control the overview screen. It could be used to configure the size of the views and the

information displayed in the views. As in the overview screen the views are pre-defined per

role.

8.3.3 Portable screen

The portable screen is an addition to the close-up screen. It always shows the same

information as the close-up screen. If the portable screen is docked in the docking station

the display is disabled. Only when the user needs to carry information for discussion, the

portable screen can be taken away to display the same information as the close-up screen.

8.4 The views that shall be available ŦƻǊ ŀ ǎǘŀƴŘŀǊŘƛǎŜŘ ƻǇŜǊŀǘƻǊΩǎ ǿƻǊƪǎǘŀǘƛƻƴ

are also described in D7.3 and part of it shown in the Table 10.1 in

Appendix A. The full table is shown in D7.3 CƘŀǇǘŜǊ пΦмлΦп ά5Ŝǘŀƛƭǎ ƻŦ

±ƛŜǿǎέΦ ¢ƘŜ ǾƛŜǿǎ ǿƛǘƘƛƴ ƻƴŜ ǎŎǊŜŜƴ Ŏŀƴ ōŜ ŀǾŀƛƭŀōƭŜ ŀǎ ǎƛƴƎƭŜ ǳǎŜǊ

interfaces from different vendors, but they should have the same look and

feel.Required UI integration patterns

To analyse integration patterns two concepts shall be separated:

Á UI Toolkit, like SWT, Qt, JavaFX, and Motif with the main objective to draw graphical

primitives like Buttons/Text/Widgets/etc. on the screen and 2D and 3D contents;

Á Rich Client Platform providing all building blocks for creating an application from

plugins. Typically, an RCP uses the UI Toolkit to harmonize UI representation of

integrated Plugins.

To identify the required integration patterns one of the most successful RCPs on the market

has been analysed ς Eclipse. Other UI-Toolkits enable structuring bigger applications in

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 35 of 45

modules (plugins) as well, but only Eclipse is a basis for hundreds of independent projects

integrated into many applications.

The architecture of Eclipse RCP is shown in Figure 8.4.

Figure 8.4: Architecture overview of Eclipse RCP

Eclipse is based on a common programming language enabling direct program calls,

ƛƴŦƻǊƳŀǘƛƻƴ ƘƛŘƛƴƎ ōȅ άLƴǘŜǊŦŀŎŜέ-concept, and synchronous logic. The plugins are delivered

in form of a JAR-Archive and called a άōǳƴŘƭŜέΦ ¢ƘŜȅ use UI Toolkit directly for management

of their representation.

The basic integration pattern in Eclipse is quite simple:

Á One module provides extension points;

Á Other modules provide extensions;

Á The extension points and extensions are specified as textual documents in XML-

format, enabling application creation by configuration.

The main UI integration pattern represents the concept of Action.

An action is a class containing:

Á Label (to be presented in Menus);

Á Icon (to be presented in Buttons/Tool bars);

Á Description text to provide Help/Tooltip information;

Á State ς enabled/disabled.

In order to provide the State, Actions are often connected to the concept of Selection. Each

Window has its own Selection-Object, which is a list of currently selected objects. An Action

can subscribe to it and decide if it is enabled or not. For instance an action showing detailed

information about a signal observes selected elements and is active only if a signal is

selected for which it has detailed information.

Programming Language (Java)

Container management (OSGi) UI Toolkit (SWT)

RCP

Programm module (plugin)

Plugin

description

Integrates itself
Draws itself

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 36 of 45

In Eclipse there is a distinct plugin representing an Application, provided by the application

vendor. It reserves sections for further extensions in its:

Á Menu bars;

Á Tool bars;

Á Context menus.

and publishes them as extension points. Other applications provide extensions in the form of

Actions-sets.

Actions from extending applications are provided to the user in Menus and Toolbars. If

selected, the RCP calls the function Action.run. Here, the extending application decides what

to do:

Á Ask the RCP to open a new View or Editor;

Á Change selection in one of the previously open views;

Á Do some calculation, etc.

A UML class diagram in Figure 8.5 represents the integration pattern.

Figure 8.5: UML Class diagram for UI Integration in Eclipse

In the next section the mentioned Eclipse Integration patterns are mapped into the

infrastructure provided by AF and IL.

8.5 UI integration approach

The most crucial aspect missing in IL/AF in comparison to Eclipse is a common RCP. In Eclipse

the modules use it for:

Á Integration of their content into one Layout;

Á Representation of shared Buttons, Icons and Text fields;

Á Exchange of context information, e. g. selections.

The first two elements are provided by the UI Toolkit used by RCP as a basis. In case of

Eclipse it is SWT for desktop applications, and some other libraries for web applications.

Selection

Window

ISelectionListener IAction

ShowSignalAction

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 37 of 45

In case of In2Rail-Platform it cannot be assumed to use a common UI-Toolkit because:

Á The modules can be developed in different programming languages and;

Á UI Toolkits are programming language specific;

Á Risk of short life time.

Some kind of exception represents the ActiveX-approach, where the Controls provided by

Windows can be used directly by applications, replacing the UI-Toolkits to some extent. But

this interface seems to be outdated on the one hand and is supported only with Windows on

the other.

Due to the decision to use IL as a communication platform, the UI-Modules can

communicate by publishing their states on some Topics and Subscriptions.

A possible architecture of UI integration is shown in Figure 8.6. The cylinders in the figure

represent Topics on the Integration Layer.

Figure 8.6: Integration of Applications into UI by means of Actions and Selections (metaphor: Eclipse RCP)

Here is the detailed description of the constituents:

Á App with extension points: any Application can provide a UI as one or several

Windows;

Á Selection topic publishes the list of selected objects. A selected object is represented

as an address specified in the Canonical Data model, e.g. /tms/signals[s8231];

Á ActionSet ς is a list of Actions the application with extensions is able to apply now. It

is assumed that the App will update this list 10-30 ms after each change of Selection.

The App with extension points have to ensure that there is this time interval between

the change of selection and construction of context menus, so that it can represent

the most current state of actions.

App with extension

points

Object

Selections

App with extensions

ActionSets
Fired

Actions

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 38 of 45

It is assumed that an Action to be represented by two objects:

- Static containing Label, ToolTip text, and Icon as a binary string in PNG or SVG

format,

- Dynamic object representing the current state (enabled/disabled) and assumed

selection objects. The Application with extension points is able to check, if the

current selection fits to the assumed selection in the action and skip actions with

selection mismatch;

Á If the user activated an Action by selecting a menu or pressing the tool button, the

Application with extension points publishes:

- the Id of the action,

- the current copy of the selection,

- Window position on the screen,

- Mouse position on the screen to enable reactions close to the requested Window,

- Widget-handle where the app expects the extension to draw its content;

The App which provided this Action reacts according to its logic.

Á In many cases, the Applications will be independently developed, therefore the

Application with extension points will not know, how many Views the application

issuing the Action represents on the Activation Event. Therefore it is assumed that in

most cases Applications will represent their content in distinct Windows. This fact is

represented by ApplicationWindow-Class in the class diagram.

The next UI-integration aspect is related to relative positions of the applications on the

workstation. To handle it an additional service shall be started on each Node with UI: UI

controller (see Figure 8.7).

Figure 8.7: Synchronisation of windows locations on the workstation with help of UI controller

UI

Controller

App

Window

Position

requests

Position

Layout

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 39 of 45

The TMS-tenders often require configurability for positioning of Windows on the Desktop.

They comprise:

Á Prescribed areas for each Application-Window in pixels;

Á Prevention of overlapping for specific windows;

Á Store/Restore the size and position of all Windows.

All these functions are implemented by the Window Layouter concept. Each Window before

starting its construction looks if an appropriate configuration already exists and if not

publishes its request with App-Id, required size of the view. The Windows Layouter uses its

own configuration to calculate and publish the position and size for the Window. Often some

of these functions are implemented by Window Manager provided as part of Operating

System. To enable platform independence an explicit modelling of these concepts in IL is

needed.

Focus management ς is done by UI Controller. Each application requiring focus requests it

from UI Controller, who decides if the focus change is allowed.

As always, the In2Rail-Platform shall provide only specifications for Topics and the data

structures in the Topics. For details see D8.4.

8.6 Use cases for UI integration

8.6.1 Selection usage

In TMS domain several examples where Selection-pattern can be used:

Á A restriction is selected in the restriction editor and because of that the restriction

should be centred in the topology view;

Á A station is selected in the map view and because of that the station is shown in the

CCTV view;

Á A train is selected in the time-distance diagram and the corresponding train driver is

shown in the train driver communication view.

An interesting aspect could be the activation of Actions by an external logic (see Figure 8.8).

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 40 of 45

Figure 8.8: Separation of UIs by additional customer specific logic

If App 1 publishes a new selected object (e.g. a station) some additional logic can observe

the delay level in this station and decide to start CCTV-application in case of overcrowding.

As a consequence both applications are totally unaware of the existence of the other.

Often, the business logic behind this process depends on the kind of selection. Therefore the

Selection shall provide the kind of selection as well: clicked, double clicked, menu-selected,

key-selected. In this case ǘƘŜ άǊŜŎŜƛǾƛƴƎέ ŀǇǇƭƛŎŀǘƛƻƴ Ŏŀƴ ŘŜŎƛde how to react on the

selection.

Further content of the Selection data structure is the issuing Window-ID and the selected

ŜƭŜƳŜƴǘΩǎ position on screen.

8.6.2 Lazy starting

One of the features of Eclipse RCP is its lazy loading of plugins. The developer can put many

ǇƭǳƎƛƴǎ ƛƴǘƻ ƻƴŜ άApplicationέΣ ōǳǘ ƻƴƭȅ ǘƘŜ ά!ǇǇƭƛŎŀǘƛƻƴέ-Bundle is started at the beginning.

The others are loaded later as soon as their instantiation is required. Typical triggers for

instantiations are Actions:

Á A plugin provides its extensions, which are used by connected plugins with extension

points to be represented in menus;

Á As soon as an action is activated (i.e. a method run() is called) the RCP loads the

Action implementation and gives the further execution to it.

This kind of application loading enables quick starts and high scalability.

Starting rendering Activities (local plugins) can be implemented by the means of AF: the

starting command for the application belongs to the static part of an Action (see Figure 8.9).

¢ƘŜ bƻŘŜ ƻōǎŜǊǾƛƴƎ ǘƘŜ ά!Ŏǘƛƻƴέ-Activation topics start an appropriate bundle as soon as an

Action requires that bundle and it is not yet started.

App 1

Selection

Customer specific

logic (microservice)

Action

state

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 41 of 45

Figure 8.9: UI Controller providing lazy starting functionality

The UI Controller is responsible for observing the Topic άFired Actionsέ, identifying the

required bundle states, and if the specific bundle is not active (not installed), asking the

Node management for it.

The logic behind the UI Controller could be in a wide range from pre-starting all bundles at

the beginning of their static positions according to the configuration of the User Profile to

fully dynamical actions based on the Usability restrictions like available monitor resolution,

other started applications, available space on desktop, etc. The implementation details of

this logic are not part of the In2Rail platform.

User profiles make it easy for the user to start the whole TMS in the desired configuration. In

traffic management departments several roles cooperate with each other, e.g. dispatcher,

supervisor, etc. All existing roles are already mentioned and described in D7.2 and D7.3 (see

ŎƘŀǇǘŜǊ пΦмлΦтΦм άwƻƭŜǎέ ƛƴ 5тΦо ŀƴŘ ŎƘŀǇǘŜǊ пΦнΦм ά!ŎǘƻǊǎέ ƛƴ 5тΦнύΦ CƻǊ ŜŀŎƘ ƻŦ ǘƘŜ ǊƻƭŜǎ

the screen needs to be adapted to their needs, with different views and arrangements (see

D7.3 chapter 4.10.5 ά[ŀȅƻǳǘ ƻŦ ±ƛŜǿǎέύΦ 9ǾŜƴ ǿƛǘƘƛƴ ƻƴŜ ǊƻƭŜΣ ŜΦƎΦ ŦƻǊ the dispatcher, the

views or the arrangement of the views may be different. To reload such preferences of one

user, user profiles are saved.

A User profile contains:

Á Configured workstation layout;

Á The actual workstation layout.

Workstation layout contains the definition of represented Windows (started bundles) incl.

Screen-selection and positioning.

App with

extension points

Fired

Actions

UI Controller

Bundle

states

Desired Bundle

states

Node

management

User

profiles

Session

States

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 42 of 45

8.6.3 Rendering of remote content

Nowadays, popular approach to provide UI is the Web-based clients. In this case, the

integrating Application can provide its own view, which renders the Web-based

representation of the remote logic.

Web applications are not the only way to provide the content remotely. Some other

techniques on the market are:

Á RDP (Remote desktop protocol);

Á VNC Remote Framebuffer protocol;

Á Nomachine NX Protocol;

Á ICA protocol (Citrix);

Á X-Protocol.

The configuration information to start such a UI shall be part of the Action-configuration: As

soon as an Action is started the integrating Application provides a rendering View and starts

the communication library supporting the rendering engine.

As the communication between UI-Applications is done per IL, no additional communication

ƛƴŦǊŀǎǘǊǳŎǘǳǊŜ ŦƻǊ άŎƻƴǘŜƴǘέ-based integration of the local and the remote application is

needed. They can use the Action/Selection patterns presented in previous sections.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 43 of 45

9 Conclusions

The critical point for opening the TMS markets and driving innovations represents the

modularisation of the TMS software. This step allows many companies to provide small

functionalities solving specific TMS issues.

On the other hand splitting the TMS software in many modules introduces new issues:

Á The reliability of the TMS as a whole must be ensured;

Á Each small TMS application shall be deployed, versioned, tested for integration,

configured;

Á The small TMS applications must be orchestrated (started, stopped, dynamically

configured);

Á The small TMS applications must create a consistent User Interface ƻƴ ǘƘŜ ƻǇŜǊŀǘƻǊΩǎ

workstation;

Á The requirements on hardware shall not be (much) higher than for conventional TMS

software.

The Application Framework shall solve these problems.

The long life cycle of the TMS applications with 20-25 years prevents direct use of the

existing integration platforms on the market. On the one hand there are several

projects/products competing so their life time is currently unpredictable. On the other hand

the interfaces and functionalities of the projects are different, so the substitution of the

solution could require considerable effort from the IMs.

This document together with deliverable D8.7 provides a narrow wrapper, separating actual

implementation from the tools using it in TMS. This allows simple exchange of the basis

technology without involvement of IM and ensures long life time of the integrated TMS

software.

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 44 of 45

10 Appendix A

View Name Summary

Widget View This view offers different widgets, connected to the internet,
which provide to the user complementary information that
may be useful depending on the use case/operational
scenario.

Map View This view provides an animated map containing static and
dynamic information. Layer-concept shall be used to group
different kinds of information, such as: information related to
crew management, consist management, train operation,
evacuation facilities, etc.

Topology View A schematic view of the railway is provided, allowing the user
to concentrate on railway operation when needed

CCTV View This view shall offer CCTV images of the different cameras
installed in the area being controlled at the TMS

Telefony-View This view shall allow the operator to connect with the train
drivers and other staff by voice communication utilising GSM-
R and other communication means.

Alarm and Events View List of alarms and events that are being processed by the TMS
displayed as a tabular view

Planning View This view shall provide schedule and regulation information
of the railway operation

Settings View View for allowing the user to customize the workstation

Actions View This is a dynamic view, automatically activated when the user
wants to send a command to a certain element or group of
elements

Detailed View A view for displaying details of a certain element. The details
vary depending on the selection done

Assets View View for displaying assets information in real time that can be
used by maintenance personnel

Logistics View View for displaying logistic information associated with the
maintenance of the railway

Reports and stats view View for creating and displaying reports and stats of the TMS.
¢ƘŜ ǾƛŜǿ ǇǊƻǾƛŘŜǎ ǎǳǇǇƻǊǘ ŦƻǊ ōƻǘƘ άƻǇŜǊŀǘƛƻƴ ƻŦ ǘƘŜ Ǌŀƛƭǿŀȅέ
information and maintenance information

Customer information
View

View for graphical representation of the customer
information infrastructure.

Table 10.1: Details of Workstation Views [D7.3 chapter 4.10.4.]

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

GA 635900 Page 45 of 45

11 References

[ACCP 2017] https://accelerite.com/products/cloudplatform/
[AWS 2017] Docker Enterprise Edition on the AWS Cloud, retrieved from

https://s3.amazonaws.com/quickstart-
reference/docker/latest/doc/docker-datacenter-on-the-aws-
cloud.pdf

[Cachin et.al.2006] Introduction to Reliable and secure distributed programming. C.
Cachin, R. Guerraoui, R. Rodrigues, Springer, 2006

[Chappell 2004] Enterprise Service Bus: Theory in PracticeΤ 5Φ !Φ /ƘŀǇǇŜƭƭΣ hΩwŜƛƭƭȅΣ
2004.

[CloudFoundry
2017]

https://cloudfoundry.io

[Daniel et al 2007] Understanding UI Integration: A Survey of Problems, Technologies,
and Opportunities. F. Daniel, M. Matera , Jin Yu, B. Benatallah, R.
Saint-Paul, F. Casati 2007. Retrieved from
http://www.floriandaniel.it/papers/DanielIEEEIC07.pdf

[Docker 2017] https://docs.docker.com/engine/swarm
[EC2 2017] http://docs.aws.amazon.com/AmazonECS/latest/developerguide/doc

ker-basics.html
[EMB 2017] http://www.embotics.com/solutions-cloud-governance
[Hazelcast 2017] Hazelcast IMDG, retrieved from https://hazelcast.org/
[Kubernetes 2017] https://kubernetes.io/
[MS VMM 2017] https://docs.microsoft.com/en-us/system-center/vmm/overview
[IN2RAIL D7.1] State-of-the-Art and High Level Requirements. IN2RAIL
[IN2RAIL D7.2] Consolidated functional and non-functional requirements. IN2RAIL
[IN2RAIL D7.3] Specifications of the Standard Operator Workstation. IN2RAIL
[OMG DDS 2017] 5ŀǘŀ 5ƛǎǘǊƛōǳǘƛƻƴ {ŜǊǾƛŎŜϰ ό55{ϰύ, retrieved from

http://www.omg.org/spec/DDS
[OpenShift 2017] https://openshift.io/
[OSGi 2017] The OSGi Alliance: OSGi Core. Retrieved from

https://osgi.org/download/osgi.core-7.0.0-early-draft-2017-03.pdf
[Paulheim 2009] Ontologies for User Interface Integration, H. Paulheim, Retrieved

from http://www.heikopaulheim.com/docs/iswc_2009.pdf
[RH CF 2017] https://www.redhat.com/en/technologies/management/cloudforms
[SWVM 2017] http://www.solarwinds.com/virtualization-manager
[VMT 2017] https://turbonomic.com/solutions/projects/private-cloud-

management/
[VMW 2017] https://www.vmware.com/products/vcloud-suite.html
[Winn 2017] Cloud Foundry: The definitƛǾŜ ƎǳƛŘŜΣ 5Φ/Φ9Φ ²ƛƴƴΣ hΩwŜƛƭƭȅ, 2017

https://s3.amazonaws.com/quickstart-reference/docker/latest/doc/docker-datacenter-on-the-aws-cloud.pdf
https://s3.amazonaws.com/quickstart-reference/docker/latest/doc/docker-datacenter-on-the-aws-cloud.pdf
https://s3.amazonaws.com/quickstart-reference/docker/latest/doc/docker-datacenter-on-the-aws-cloud.pdf
https://cloudfoundry.io/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://kubernetes.io/
http://www.heikopaulheim.com/docs/iswc_2009.pdf

