

In2Rail

Project Title: INNOVATIVE INTELLIGENT RAIL

Starting date: 01/05/2015

Duration in months: 36

Call (part) identifier: H2020-MG-2014

Grant agreement no: 635900

Deliverable D8.7
Interface Control Document (ICD) for Application-specific

Interfaces

Due date of deliverable Month 27

Actual submission date 30-07-2017

Organization name of lead contractor for this deliverable CAF

Dissemination level PU

Revision FINAL

In2Rail Deliverable D8.7

Interface Control Document (ICD) for Application-specific Interfaces

Authors

 Details of contribution

Author(s) CAF Signalling (CAF)
Carlos Sicre Vara de Rey
Manuel Castro Viñas

Coordination and Document
structure of D8.7
Contributions to Sections 1-8
Review of Appendix 1

Siemens (SIE)
Stefan Wegele

Contributions to Sections 1-8
Appendix 1

Contributor(s) Ansaldo STS (ASTS)
Gian Luigi Zanella
Matteo Pinasco

Contributions to Sections 1-8
Review of Appendix 1

AZD Praha s.r.o. (AZD)
Martin Bojda
Michal Žemlička
Martin Růžička

Contributions to Sections 1-8
Review of Appendix 1

Bombardier
Transportation (BT)
Roland Kuhn
Martin Karlsson
Zbiewniew Dyksy

Contributions to Sections 1-8
Review of Appendix 1

HaCon (HC)
Sandra Kempf
Rolf Gooßmann

Contributions to Sections 1-8
Review of Appendix 1

Thales (THA)
Jean-Yves Friant
Jean-Jacques Rodot

Contributions to Sections 1-8
Review of Appendix 1

GA 635900 Page 3 of 37

Executive Summary

The overall aim of the In2Rail project is to set the foundation for a resilient, cost-efficient,

high capacity, and digitalised European Rail Network.

Intelligent Mobility Management (I2M), a sub-project of I2R, is one of the three technical

sub-projects and comprising Work Package 8 (WP8). WP8 addresses and develops a

standardised integrated ICT environment capable of supporting diverse TMS dispatching

services and operational systems. It also includes standard interfaces to external systems

outside TMS/dispatching (for other railway management systems and transport modes) with

a plug-and-play framework for TMS/dispatching applications.

WP8 represents the part of I²R lighthouse project to Shift2Rail IP2 and CCA which addresses

works which are key inputs to S2R TD2.9 “Evolution of Traffic Management System” and CCA

WA4.2 Integrated Mobility. All deliverables from WP8 will form the base for proceeding

works in X2RAIL-2. WP6 “Traffic Management System” (IP2) and IMPACT-2 WP7 “Integrated

Mobility” (CCA).

The current document corresponds to the seventh deliverable inside WP8, and is focused in

the description of the required Data structure and Message Definition Syntax for the

applications inside the TMS Application Framework related to their lifecycle.

The research has been conducted by all partners of WP8, and the inputs have been

consolidated in this document.

GA 635900 Page 4 of 37

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3

ABBREVIATIONS AND ACRONYMS 5

1 OBJECTIVES 6

2 BACKGROUND 8

3 PURPOSE AND STRUCTURE OF THE DOCUMENT 9

4 DESCRIPTION OF AF/IL 10

5 AF CONSTITUENTS 12

5.1. BUNDLES 13

5.2 AF MANAGER 13

5.3 AF NODE MANAGERS 13

5.4 AF IMPLEMENTATION 13

6 MESSAGE DEFINITION SYNTAX 15

7 TOPICS 18

7.1 CONFIGURATION TOPICS 18

7.1.1 AFLogicView 18

7.1.2 AFDeploymentView 20

7.2 TOPICS FOR AF-COMMANDS 21

7.2.1 Deploy bundle command 22

7.2.2 Start bundle command 22

7.3 TOPICS FOR AF-STATUS 23

8 CONCLUSION 24

9 GLOSSARY 25

10 REFERENCES 26

APPENDIX 1: DATA STRUCTURES 27

GA 635900 Page 5 of 37

Abbreviations and Acronyms

Term Description

AF Application Framework

AL Application Layer

API Application Programming Interface

CDM Canonical Data Model

CENELEC European Committee for Electrotechnical Standardization

EU European Union

ICT Information and Communication Technologies

IF Interface

IL Integration Layer

I²M Intelligent Mobility Management

I2R In2Rail

TMS Traffic Management System

TSR Temporary Speed Restriction

UI User Interface

UML Unified Modelling Language

UUID Universal Unique IDentifier

WP7 Work Package 7

WP8 Work Package 8

XML eXtensible Markup Language

XSD XML Schema Document

GA 635900 Page 6 of 37

1 Objectives

WP8 constitutes one of the issues in the framework of the Project titled “Innovative

Intelligent Rail” (Project Acronym: In2Rail; Grant Agreement No 635900).

The overall objective of WP8 is to address and develop a standardised integrated ICT

environment capable of supporting diverse TMS dispatching services and operational

systems. Additionally, WP8 deals with standard interfaces to external systems outside

TMS/dispatching and with a plug-and-play framework for TMS/Dispatching applications.

The WP 8 includes two areas; the Integration Layer and the Application Framework for

applications. Each area is devoted to specific subtopics, which are shown in Figure 1.1.

Figure 1.1: Subtopics of WP8

The Application Framework should comprise TMS core applications managing highly

dynamic services and enable plug-and-play functionality (Figure 1.2).

GA 635900 Page 7 of 37

Figure 1.2: Overview of integration of TMS Application Framework

The long term objective for the project is to provide a standardised integrated ICT

environment supporting TMS applications connected to other multimodal operational

systems.

The objective of this Interface Control Document (ICD) is description how Plug-and-Play

installation of the different business service applications in a framework can be ensured and

hence avoiding complex and costly function and data mapping processes within the

Interface structures.

Deliverable 8.7 is the first step towards standardized Interfaces in the Application

Framework and will be followed from proceeding activities in X2RAIL-2, WP6 project of S2R

including development of prototypes up to TRL6.

GA 635900 Page 8 of 37

2 Background

The available products and systems for the Traffic Management Application available on the

market from the various supply sources do not have standardized data structures and

interfaces. This leads to enormous one-time efforts and cost to link sub-systems and

products of different suppliers.

Cost savings linked to the reduction of these non-recurrent cost are considered to reach up

to 10% of the total project cost if combinations of sub-systems would use a standardized ICT

structure are applied within the overall system.

Therefore, the standardisation of Interfaces between different TMS business service

applications is a key target for In2Rail and the preceding S2R activities.

In the frame of specifying and developing a new integrated and standardized ICT structure

for Rail Operation services the standardization this deliverable is the first step towards the

required Data structure and Message Definition Syntax for the Interfaces between

applications inside the TMS Application Framework.

GA 635900 Page 9 of 37

3 Purpose and structure of the document

The aim of this document is to provide a formal specification of the Data structures and

Message Definition Syntax for the Applications inside TMS Application Framework related to

their lifecycle.

This document together with [D8.6] shall enable fulfilment of the requirements specified in

[D8.5]. The deliverable D8.6 provides functional description of the AF-modules with

reasoning for architectural decisions.

The document is structured as follows:

 Chapter 4 describes the Integration Layer and Application Framework;

 Chapter 5 provides a description of the Application Framework constituents;

 Chapter 6 provides the message definition syntax;

 Chapter 7 focuses on the different Topics used by the Application Framework for

communication;

 Chapter 8 consists of the conclusion of the document;

 Appendix 1 contains the definition of the data structures utilized.

As the Application Framework uses Integration Layer as communication platform, the

implementation of the Application Framework services is only possible after issuing the D8.4

(ICD for Integration Layer).

GA 635900 Page 10 of 37

4 Description of AF/IL

A general overview on IL/AF is provided in Section 1. In this Section both are described in

further detail.

According to the current design activities in In2Rail, the communication platform for

applications is provided by the Integration Layer, as it is shown in Figure 4.1.

Figure 4.1: Constituents of the Integration Layer

The Integration Layer uses existing COTS middleware and separates it by means of a dynamic

library for C/C++ and Java clients. In opposite to the conventional message based

middleware products, the IL is responsible not only for the data distribution, but for data

management as well. For this purpose, it combines a non-relational database with publish-

subscribe mechanism.

To manage the communication processes on the Integration Layer InMemoryGrid-

Technology will be applied. [Hazelcast 2017], [Redis 2017] show the general approach for

data access and distribution. They support on the one hand the Java.Utils.Map-like API for

access of key-value pairs. On the other hand they provide publish-subscribe mechanism to

distribute modifications of key-values to arbitrary number of clients.

Another important aspect of the IL is the standardised data structures and serialisation,

which is managed by IL. For this purpose, the IL provides a class diagram in an XML-Format,

which can be used for generation of client and serialisation code. At the current stage, the

Protobuf-Protocol [Protobuf 2017] has been selected for serialisation, as it combines most of

the advantages of a binary protocol with build-in versioning and a “one-command-bi-

directional-conversion” in JSON.

The Application Framework (AF) is a set of add-on services, allowing plug-and-play

functionality for TMS applications. It is responsible for deployment and appropriate

execution of the applications, allowing centralised application management and

configuration.

COTS Middleware

API (DLL)

Application

C/C++

API (JAR)

Application

Java

Integration Layer

GA 635900 Page 11 of 37

At a first glance the reason for this document and Application Framework at all seems to be

questionable. If the main responsibility of AF is container management (plug-and-play

functionality of TMS applications), it seems to be obvious to select an existing technological

stack and prescribe it for TMS applications for the next 25-30 years.

Several technologies are competing to provide the best solution in the context of container

management:

 Different Platform offering function as a service (so called Server less computing) like

AWS Lambda (Amazon), Azure Functions (Microsoft), Cloud Functions (Google), Open

Whisk (IBM/Apache), Manta (Joyent), hook.io, Iron.IO, Webtask.io, Fission, Function

(Red Hat), Kubeless (Bitnami) [iX 6/2017];

 Platforms offering container management as a service (so called container as a

service CaaS) e.g. EC2 Container Service (Amazon), Google container Engine (GKE)

using different software stacks like Google Kubernetes, Docker Machine, Docker

Swarm, Apache Mesos, etc;

 Platforms as a service (PaaS) with over 70 vendors today

[https://paasfinder.org/vendors].

There are several justifications against this approach:

 The available platforms are incompatible, and provide non standardised API;

 The required granularity for management of stateful microservices (hot standby,

warm standby, real-time failover, global singletons, etc) is not supported.

As it was shown in the previous section, the market for PaaS is currently very volatile and the

standardised solution available on the market for the next 30 years needs to be yet

established.

This is the reason to specify a narrow API hiding different existing implementations and

providing enough flexibility for management of TMS applications. A detailed functional

description of AF is provided in [D8.6].

GA 635900 Page 12 of 37

5 AF Constituents

The overall architecture of the Application Framework is represented in Figure 5.1, where

there are represented the active instances of the Application Framework and the Topics they

use for communication (with green background).

Figure 5.1: Architecture of Application Framework

It consists of the following information Topics (or “Maps”, term used in the context of IMDG):

 AFLogicView;

 AFDeploymentView;

 AFRunView;

 AFNodeStates;

 AFBundleStates.

We only specify five message types – one for each Topic in IL (AFLogicView,

AFDeploymentView, AFRunView, AFNodeStates, AFBundleStates), so that we can manage

applications connected to IL-Topics (start, stop, connect, monitor, deploy, undeploy).

The active instances of the Application Framework are the following:

 Bundles;

 AFManager;

 AFNodeManagers.

AFLogicView

AFDeployment

View

AFRunView

AFNodeStates

AFBundleStates

AFManager

AFNodeManagers

Bundles

GA 635900 Page 13 of 37

These instances will communicate with each other with the five Topics mentioned above.

Although we will not specify neither AFManager nor AFNodeManager, they are exposed as a

proposal in this document, but the vendor is free to apply his own ideas.

5.1. Bundles

Bundles represent executable entities like exe-files, JAR/DLL libraries, Virtual Machines or

Containers (e.g. Docker). They can be started either by user specific mechanisms or by

Application Framework constituents named AFNodeManagers. Bundles publish their

running state on the Topic named AFBundleStates using appropriate data structure

(Appendix 1). Bundles are also subscribed to AFRunView Topic and start and stop services

contained in the bundle. They also finish themselves according to the “commands”

published on AFRunView topic (Section 7.1.2). Bundles are provided by several software

vendors and cover some TMS-specific functionality.

Every bundle shall include a MANIFEST.MF file that will be deployed with the rest of the

artefacts. This file will include the following fields:

5.2 AF Manager

AF Manager is a constituent of the Application Framework and represents a central logic,

which decides on which Node which Bundle and Service shall run. At any point in time only

one AFManager instance is active in one Application Framework. It publishes its decisions on

the Topic named AFRunView.

5.3 AF Node Managers

AF Node Managers are constituents of the Application Framework and represent a logic unit

running on each Node (executing entity like Server, Virtual Machine or a Docker cluster). It is

responsible for the following tasks on the Node it manages:

 Deployment of the specific bundle;

 Publication of the Node state on the Topic AFNodeStates to allow dynamic failover,

monitoring and load balancing;

 Start of the single bundles according to the decisions published on Topic AFRunView.

5.4 AF Implementation

To configure the Application Framework, the system administrator shall provide two

configurations:

 AFLogicView, where it is specified which services shall read and write to which Topics

on the IL. Besides that, it specifies the start/stop logic and failover options (see

Section 6);

GA 635900 Page 14 of 37

 AFDeploymentView, where it is specified which bundles (containing services) shall

be deployed on which Node.

The initial intention for the possible implementation was to follow the microscopic

architectural approach and allow a specific Application Framework-Service for each function:

 Node monitoring (publishing Node state);

 Bundle deployments;

 Bundle starting on Nodes.

A prototype implementation showed that the code wrapping some Off-the-shelf-

functionality involved in each function is relatively small, so tripling the administration

complexity in comparison to the monolithic approach is not acceptable. The decision about

the number of services influences the number of used Topics and Data structures strongly as

well; each service must have at least one specific Topic with special data structures for

publishing its state. With the decision of having only one AF-executable on each Node, the

following points are achieved:

 Reduction of the complexity of setup of a new Node managed by Application

Framework. Only one executable must be installed on a Node and started in service-

mode with configured ID. The deployment and management of the functional

software in plug-and-play-manner is responsibility of the Application Framework;

 Combining several services in one executable allows a reduction of the number of

required messages and Topics, what means a strong reduction of the required

network bandwidth – instead of two independent messages with Node state, bundle

deployment state we have only one.

Every Topic will be described in section 7, and they will be structured in the following way:

 Configuration Topics:

- AFLogicView,

- AFDeploymentView;

 Start/Stop command Topic:

- AFRunView;

 Status Topics:

- AFNodeStates;

- AFBundleStates.

GA 635900 Page 15 of 37

6 Message Definition Syntax

To specify the class diagram for automatic code generation for serialisation and to use in

vendor specific applications, a simple and specific description mean is required. Existing

tools and standards for UML produce very flexible but complex object serialisation. Such

UML models also require a common meta-model in order to enable interoperability

between applications using the generated code. Therefore, it was decided to use a particular

XML-based format for specification of data structures. The following tables provide a

description of its elements:

 Element module

Attribute
name

string

Children enum, struct, union

Description It is a container for structure and has only one attribute – name. It is used
to separated namespaces between different domains and prevent name
collisions. For example, a “signal” element in the context of TMS can be a
different structure than in the Maintenance management system.

Table 6.1: Description of element module

 Element enum

Attribute
name

string

Children enumerator

Parent module

Description Provides a container for enumeration. The child objects define single
values

Example <enum name=”ChangeType”>

 <enumerator name=”SET” value=”0”/>

 <enumerator name=”DELETE” value=”1”/>

 <enumerator name=”INSERT” value=”2”/>

</enum>

Table 6.2: Description of element enum

 Element enumerator

Attribute
name

String, contains a name to be used for enumeration. Typically in capital
letters

Attribute
value

Integer

Children No

Parent enum

Description Provides a container for enumeration. The child objects define single
values

Example See “enum”

Table 6.3: Description of element enumerator

 Element struct

GA 635900 Page 16 of 37

Attribute
name

String, id of the structure

Attribute
extends

String, references some other defined structure if the current structure is
inherited from it.
The reference shall be of type moduleName.structName. If module name
is the same or “common”, it can be skipped.

Attribute
abstract

Boolean, if the structure will not be used for serialisation itself, but
planned to be extended by others, the attribute shall be set to “true”.
Default value: “false”

Children attr

Description The element specifies a structure with a name. Typically it represents a
serialised message.

Example <struct name=”valueChange” extends=”Change”

abstract=”true”/>

Table 6.4: Description of element struct

 Element attr

Children no

Parent struct

Description It is a container for structure and has only one attribute – name. It is used
to separate namespaces between different domains and to prevent
name collisions. For example, a “signal” element in the context of TMS
can be a different structure than in the Maintenance management
system.

Attribute
name

String, it will be used in generated code for access the value of the
attribute.

Attribute id Boolean, defines if the attribute represents an id. Typically it would be of
type “string”, but it could be an integer or reference to some other struct
as well.

Attribute
type

string, as type the id of any defined struct can be used. Some of primitive
structs like integer, double are specified in common.cm. To reference
structs defined in different modules, a point-separated notation shall be
used. For example “sd.Track” with moduleName.structName. If module
name is not specified, then it is the current module or the common-
module.

Attribute
attrId

Integer, mandatory. To enable binary encoding and ensure long term
backwards compatibility, an integer id shall be provided for each
attribute. This id shall be unique inside of the struct-element. If shall start
with 1, but in case the struct extends some other it shall start with 2.

Attribute
defaultValue

String, it is not used for serialisation, but can be used for client code
generation.

Attribute
maxOccurs

Positive integer, if the attribute represents a sequence, the value of
maxOccurs shall be either “unbounded” or contain a number > 1.

Attribute
minOccurs

Integer, optional. The default value is 0 – all attributes of a structure are
optional by default. For required attributes minOccurs shall have a
value > 0.

Attribute
containment

Boolean (“true” or “false”). Default = “true”. Annotates the composition
relation between the current structure and the attribute type structure.

GA 635900 Page 17 of 37

If true, in the serialisation the attribute will contain the structure by
value. If false, the serialisation will contain a string representing an
address of the referenced object.

Attribute
sorted

Boolean, default = “false”. If the attribute maxOccurs is not 0, this
attribute annotates that the elements inside are sorted according to their
id-attribute. This allows appropriate selection of the container (e.g. map)
during code generation. If true, the elements inside of this sequence can
be referenced by their id in other structures. Otherwise, an index has to
be used.

Attribute
typicallySign
ed

Boolean, for the purpose of efficient serialisation it is important to know
if the integer (int32 or int64) represented by the current attribute will be
signed (positive and negative) or unsigned in most of the cases.

Attribute
typicallyVarL
ength

Boolean, default “true”. For the purpose of efficient serialisation it is
important to know if the declared type will require all the declared bit –
length in most of the cases, e.g. a timestamp uint32 in seconds will
typically cover up to 24*3600 seconds and require 17 bits. In this case, it
is reasonable to say “true” to enable encoding of the value in 1-3 bytes
depending on value.

Table 6.5: Description of element attr

<struct name=”ValueChange” extends=”Change” abstract=”true”>

<attr name=”objectRef” type=”string” attrId=”2”/>

<attr name=”attributeId” type=”uint32” typicallyVarLength=”true”

attrId=”3”/>

<attr name=”type” type=”ChangeType” defaultValue=”SET” attrId=”4”/>

<attr name=”index” type=”uint32” typicallyVarLength=”true” attrId=”5”/>

</struct>

Table 6.6: Example of a struct-element

 Element union

This element is almost the same as the element struct with the exception that only one

attribute of the listed is present in the message. It can be used as a type in other unions and

structures. The main purpose of this structure is to provide dynamic polymorphism – if used

in some attribute, the message type and the message will be sent, so that the receiver can

reconstruct it.

<union name=”ChangeUnion”>

<attr name=”longValue” type=”ChangeLong” attrId=”1”/>

 <attr name=”doubleValue” type=”ChangeDouble” attrId=”2”/>

 <attr name=”stringValue” type=”ChangeString” attrId=”3”/>

 <attr name=”objectValue” type=”ChangeObject” attrId=”4”/>

 <attr name=”objectRefValue” type=”ChangeObjectRef” attrId=”5”/>

 <attr name=”group” type=”ChangeGroup” attrId=”6”/>

</union>

Table 6.7: Example of element union

GA 635900 Page 18 of 37

7 Topics

This section describes the different Topics used in the Application Framework.

7.1 Configuration Topics

7.1.1 AFLogicView

It represents a logical view on the Application Framework. This view is built by a list of the

structure ServiceConfig representing a logical entity, which is connected to specific Topics

(see Figure 7.1).

Figure 7.1: Logical view on AF as a list of ServiceConfigs – here service id234 connected to topics with ids 392,

5 and 568

The primary information pieces of the ServiceConfig are:

 Id of the ServiceConfig to be referenced by AFRunView;

 Ids of the connected Topics (incl. of their specification) to allow Bundles to connect to

the required topics after bundle start.

The following assumptions are made:

 One service can be delivered in different bundles; e. g. a timetable editor can be

delivered as an executable and as a Docker image;

 Several instances of the same ServiceConfig can be started concurrently. They all

would read and write to the same topics, but probably to different keys. Again the

same example: several timetable editors can be started concurrently, but they can

modify concurrently distinct trips to prevent inconsistencies.

In the following we specify the ServiceConfig in more detail according to the class diagram in

Figure 7.2.

ServiceConfig

id=234

Id=392

Id=5

Id=568

GA 635900 Page 19 of 37

Figure 7.2: Class diagram for ServiceConfig, which is managed in AFLogicView-Topic

It seems illogical to specify TopicConfig for the same topic in each ServiceConfig: at least

once for the Topic-writer and once for the Topic-reader. The reason for that is that different

participants on a Topic could have different requirements on data delivery:

 the Topic-writer could provide persistent data management and a data history for

the last 1000 states of an object;

 the Topic-reader wants to represent only the current state, therefore it is not

interested in persistency and require only the one last value;

 another Topic-reader requires the history of last 100 states and is interested in at

least transient durability of the data (several copies of the data in RAM).

All these participants would specify their requirements on Topic with different Quality of

Services, allowing the Middleware to establish the most effective communication.

7.1.1.1 Data structure QoS (Quality of Service)

Quality of Service specifies different aspect for delivery of messages. We are starting

according to bottom-up principle. The term Quality of Service in the context of IMDG is

strongly influenced by the Data Distribution Service – Standard of OMG [OMG DDS 2015].

Their specification provides more data structures than we used in Application Framework.

We had to limit QoS functionality to be able to integrate other existing IMDG-technologies.

In the future, QoS could be extended together with improvements on IMDG market.

One of the attributes of the Quality of Services is Durability, which will be specified as an

enumerator (Appendix 1).

7.1.1.2 Data structure TopicConfig

The TopicConfig data structure describes the Topic configuration needed by the Service for

exchange information with other applications (Appendix 1).

ServiceConfig

id=234

TopicConfig

QoS

Quality of service

Topic: AFLogicView

ServiceConfig

ServiceConfig

ServiceConfig

ServiceConfig

…

GA 635900 Page 20 of 37

7.1.1.3 Data structure ServiceConfig

One of the interesting aspects of a service is when should it be activated. There are several

policies that can apply:

 Always active one instance;

 Batch mode activation on timer;

 Load-balanced activation, e.g. start a new instance if overall load of other instances is

higher than 70%;

 Start on occurrence of a special key-value in some topic;

 Start on opening of a new Topic.

The data structure “KeyOnTopicTrigger” allows to configure triggering the application start

by appearance or removal of specail key-value on some topic (Appendix 1).

The data structure “ServiceActivationConfig” allows the AFManager to identify when to

start a service as described above (Appendix 1).

The data structure “ServiceConfig” is a container of the previously specified data structures

and provide additional attributes for administration (Appendix 1).

7.1.2 AFDeploymentView

In the previous section we looked at the TMS as a network of connected logical services. In

this section we specify how the Application Framework shall be configured to allow

automatic start of the logical services.

The services are logical instances located in bundles – which are the executable entities in

Application Framework. Typical examples are executables, Docker-container and JAR-

libraries managed by a “jar-box”.

The data structure living in AFDeploymentView Topic is “BundleDeployment”, and answers

the following questions:

 on which Node which bundle is deployed;

 which logical Services listed in AFLogicView can be started inside of which Bundle.

The Application Framework deduces where to start a logical service from the list of deployed

Bundles.

GA 635900 Page 21 of 37

Figure 7.3: Class diagram of BundleDeployment and its location in Topic AFDeploymentView

The Application Framework shall support different types of bundles. On the other hand the

bundle type prescribes the runtime environment. E. g. a docker image-bundle requires a

Docker infrastructure of a specific type and version installed on the Node.

As a first approach we specify the type of the bundle in an enumeration. We assume that the

same information about runtime can be deduced from the bundle-archive-ending (e.g. exe

for executable on Windows, jar for a Java archive, vdi, ova, ovf for virtual machine images).

Attributes with runtime vendor and version are optional and simplify checks by the system

administrator.

The “BundleDeployment” data structure allows the NodeManager to deploy and to start

the deployed bundle (Appendix 1). One of its attributes is the type of the bundle

(BundleType).

7.2 Topics for AF-Commands

The Application Framework has two kinds of information flow which look like a command:

 Deploy bundle XY on Node N2;

 Start bundle XY on Node N2;

 Start service ZX inside of the bundle instance XY running on Node N2.

In the context of Integration Layer, the commands are represented by the “desired” state,

which is published to all subscribers and continues to be active, until the “desired” state

changes or the desired state is achieved. To identify that the desired state is achieved, the

requesting service observes some topic representing current state or observes the “reply

topic”, where some other service claims to achieve the desired state.

In this section we model data structure required to represent the commands above. The

“replies” are published on AFBundleStates and AFNodeStates – topics and will be specified

partly in this section and partly in Section 7.3.

BundleDeployment

Node ServiceConfig

AFDeploymentView

BundleDeployment

…

BundleDeployment

BundleDeployment

BundleDeployment

GA 635900 Page 22 of 37

7.2.1 Deploy bundle command

In the deployment workflow there are two Topics involved:

 the desired deployment state is represented in the Topic AFDeploymentView, which

is already covered in section 7.1.2;

 the status of the deployment the NodeManagers publish as part of the NodeState-

Message on AFNodeStates-Topic.

In the following we cover only the “reply” channel. To reduce the network bandwidth we

assume that most of the time the current deployment state is equal to the “desired”

deployment state. Therefore it is not reasonable to publish mostly the same information

twice: once as a desired and once as a current state. We decided to integrate the transition

from the current state to the desired state as set of steps (automat) into the NodeState-

Message. As soon as the transition is completed the only deployment information to be send

is the timestamp as the version of the implemented desired deployment state. The

deployment status on some node is integrated into NodeState-Message (Appendix 1).

If some deployment failed, the current deployment state will be continuously sent until the

system administrator or some deployment logic identifies the failure by timeout and creates

a new desired deployment state or corrects errors in the Node-Installation.

7.2.2 Start bundle command

The logic view represented in the AFLogicView-Topic contains the source information for the

Application Framework to decide which services shall be run on which node, depending on

their availability. To implement the start/stop functionality it is followed the same pattern as

for deployment:

 There is a topic representing desired/current running state which is AFRunView (see

Figure 7.4);

 There is a topic representing deviation from the desired state as part of the

BundleState-Message in AFBundleStates.

Figure 7.4: Class diagram for BundleExecution structure and the Topic managing it

AFRunView

BundleExecution

…

BundleExecution

BundleExecution

BundleExecution

BundleExecution

Node

ServiceExecution

BundleDeployment

GA 635900 Page 23 of 37

A service inside of bundle can have different states (see Enum ServiceActivityState,

Appendix 1).

The Bundle-Implementation uses the data structure “ServiceExecution” to identify how to

configure the relevant service (why it was started, to which topics it shall connect) (Appendix

1).

The NodeManager uses data structure “BundleExecution” to identify, which bundle to start

on the managed Node. The Bundle-Implementation uses this data structure to identify which

services shall be activated and how often the state of the bundle shall be published

(Appendix 1).

The NodeManager gives feedback about starting activity of a bundle in the context of its

state in the data structure “BundleStartStatus” (Appendix 1).

7.3 Topics for AF-Status

In the Application Framework, two instances are publishing its current state:

 NodeManagers publish information about Node load, deployment and bundle-

starting activities. The target of these messages is the Topic AFNodeStates, and the

data structure used is “NodeState” (Appendix 1);

 Bundle-Implementations publish information about its running state. Target of these

messages is Topic AFBundleStates, and the data struacture is “BundleState”.

Bundle Implementation shall publish its state using “BundleState” data structure (Appendix

1).

It is assumed that all messages provide a timestamp of the sender as a part of meta

information in Integration Layer (s. D8.3).

GA 635900 Page 24 of 37

8 Conclusion

The Application Framework provides optional services building a plug-and-play

infrastructure for light weight Apps. The main building blocks are the container management.

This document has described the Data structure, Message Definition Syntax and

Communication Paths of the data interchanged by the AF.

This specification is the first draft, and will be evaluated in WP7 and in Shift2Rail before

getting a real standard. After that, it will be used as a basis for development of new

innovative functions. It is expected that the AF will be extensively used to reduce

development efforts and provide integrated system management.

GA 635900 Page 25 of 37

9 Glossary

Term Definition

Application Layer Common infrastructure that handles the system management of the
applications; a communication framework that enables dynamic and
flexible interaction between the TMS applications, an interface
framework for implementing the application interfaces for
interaction between the applications, a broker framework that
allows for interaction of the TMS application with other systems via
the Integration Layer.

Application Group A set of applications that provides a Business capability

Broker Software that manages Information distribution amongst the
connected services between Application Layer and Integration Layer.

Bundle Set of executables, libraries and configuration files in the same
manner as containers. Term used as OSGi-Standard.

Container See Bundle.

Data Mart Section of the Data Warehouse.

Data Warehouse Central repository of integrated data from one or more disparate
sources (services one of them being the TMS). The Date warehouse
contains for each service specific data in different sections (data
marts) presenting History, Now-cast and Forecast information.

Decentralised Responsibility distributed, not one single entity has control over all
the processing (See https://www.quora.com/Whats-the-difference-
between-distributed-and-decentralized-in-Bitcoin-land).

Distributed Physically distributed, not all the processing of the transactions is
done in the same place (See https://www.quora.com/Whats-the-
difference-between-distributed-and-decentralized-in-Bitcoin-land).

Forecast Estimate information in the future, deviations from the plan
estimated.

Integration Layer Communication link between the different Business Services.

Node Typically it is a computer with some operating system running or a
virtual machine where bundles/containers are deployed. With the
existence of cloud based Container-Services, the term Node can
mean a managed cluster as well. In this sense the Node is one unit of
the execution platform.

Nowcast Instant information in the present.

Publisher Entity that publics messages to be consumed by one or more
subscribers. Actor of a business process that publishes Topics (i.e.
make available and updates).

Subscriber Entity that consumes messages sent by the Publisher. Actor of a
business process that receives updates about one or more different
topics it has subscribed.

Topic Information specific to a business process. A topic is made up of a
structured collection of operational data.

https://www.quora.com/Whats-the-difference-between-distributed-and-decentralized-in-Bitcoin-land
https://www.quora.com/Whats-the-difference-between-distributed-and-decentralized-in-Bitcoin-land

GA 635900 Page 26 of 37

10 References

[Hazelcast 2017] http://docs.hazelcast.org/docs/3.8.1/manual/html-single

[Redis 2017] https://redis.io/documentation

[Protobuf 2017] https://developers.google.com/protocol-buffers/

[D8.3] Description of Integration layer and Constituents

[D8.5] Requirements for the Generic Application Framework

[D8.6] Description of the Generic Application Framework and its
constituents, In2Rail, 2017

[OMG DDS 2015] http://www.omg.org/spec/DDS/1.4

[CRON 2017] https://en.wikipedia.org/wiki/Cron

[iX 06/2017] Serverless computing, iX Magazin für professionelle
Informationstechnik, 06/2017

http://docs.hazelcast.org/docs/3.8.1/manual/html-single
https://redis.io/documentation
https://developers.google.com/protocol-buffers/
http://www.omg.org/spec/DDS/1.4/
https://en.wikipedia.org/wiki/Cron

GA 635900 Page 27 of 37

Appendix 1: Data structures

In this appendix there are defined the different data structures and attributes utilised in the

Topics involved in the Application Framework:

Quality of Service / QoS

<struct name="QoS">

 <attr name="reliableTransport" type="boolean" default="true"

attrId="1"/>

 <attr name="durability" type="Durability" default="VOLATILE"

attrId="2"/>

 <attr name="historyDepth" type="uint32" typicallySigned="true"

attrId="3" default="1"/>

 <attr name="latencyBudgetMs" type="uint32" attrId="4"

default="1000"/>

 <attr name="transportPriority" type="int32" typicallySigned="true"

attrId="5" default="10"/>

 <attr name="lifespanMs" type="uint64" default="0" attrId="6"/>

</struct>

Name Type Description
reliableTransport Boolean If true, the reliable communication protocol with

acknowledges from receiver is applied, similar to
TCP. If false best effort algorithm is applied, similar
to UDP.

durability Durability See above.
historyDepth uint32 Specifies, how many historical values of an object

will be provided to a late joining client. It makes
sense only in case of not VOLATILE-duration.
Typlical value is 1. The historyDepth represents the
upper.
If quality of services is specified at the subscriber
side, the value specifies the number of historical
values to be provided to late joining subscriber.

latencyBudgetMs uint32 Specifies the number of milliseconds the
middleware can use to group several messages
into one batch for more efficient transmission.

transportPriority Int32 Values sent on the topic with the lower priority will
be sent on a client after higher priority topic has
sent all its messages.

lifespanMs uint64 Specifies, how many milliseconds a value is
interesting for the subscribers after publication.
After this amount of time, the value can be
removed from IMDG. The value 0 means – forever.

Table A.1: Attribute description of the QoS (Quality of Services) – Data structure

<enum name="Durability">

GA 635900 Page 28 of 37

 <enumerator name="VOLATILE" value="0"/>

 <enumerator name="TRANSIENT_LOCAL" value="1"/>

 <enumerator name="TRANSIENT" value="2"/>

 <enumerator name="PERSISTENT" value="3"/>

</enum>

Durability defines how long the data should survive in the context of IMDG (s. Table 11.1.2).

Enumerator value Description

VOLATILE The value can be removed as soon as all currently

subscribing clients received it.

TRANSIENT_LOCAL The value will be kept for late joining subscribers as long as

the service published them is running.

TRANSIENT The value will be kept for late joining subscribers as long as

Integration Layer - preconfigured Nodes - are running.

PERSISTENT The value will be kept even in case of shut down of the

entire Integration Layer.

Table A.2: Description of Durability enumerators

TopicConfig

<struct name="TopicConfig">

 <attr name="topicId" type="string" id="true" attrId="1"/>

 <attr name=”portId” type=”uint32” attrId=”2”/>

 <attr name="dataType" type="string" attrId="3"/>

 <attr name="qos" type="QoS" containment="true" attrId="4"/>

 <attr name="modelAddressExpression" type="string" attrId="5"/>

 <attr name="readAccess" type="boolean" attrId="6"/>

 <attr name="writeAccess" type="boolean" attrId="7”/>

</struct>

Name Type Description
topicId string A unique ID of the topic inside of one

Integration Layer. Only alpha-numeric
characters are allowed [a-zA-Z0-9].

portId uint32 A service has its distinguished input and
output topics as sources of information –
these topics the service references internally
by portId (which is unique per service). E.g.
Port=1 for input timetable
Port=2 for output of validation results.
The pair topicId & portId connects the
internal service logic with a specific Topic in
IMDG.

dataType string Represents the data type of the values
“living” on this topic. Data type is specified as

GA 635900 Page 29 of 37

Name Type Description

ModuleName.MessageName. By convention
the module name shall be identical with a
protobuf-file-name.

qos QoS See above.
modelAddressExpression string The modelAddressExpression represents a

prefix which shall be applied to the keys
managed in this topic to obtain the absolute
address of the element in canonical model.
E.g.
modelAddressExpression=/tms/af
key=node[12]/bundle[62] provides the
absolute address in canonical model
/tms/af/node[12]/bundle[62].

readAccess boolean Specifies if the service is allowed to subscribe
to the topic.

writeAccess boolean Specifies if the service is allowed to publish to
the topic.

Table A.3: Attribute description of the TopicConfig-Data structure

KeyOnTopicTrigger

<struct name=”KeyOnTopicTrigger”>

 <attr name=”topicId” type=”string” attrId=”1”/>

 <attr name=”keyExpression” type=”string” attrId=”2”/>

 <attr name=”triggerOnAppearance” type=”boolean” attrId=”3”/>

</struct>

Name Type Description
topicId string A unique ID of the topic inside of one

Integration Layer. Only alpha-numeric
characters are allowed [a-zA-Z0-9].

keyExpression string As soon as a new key patching to the regular
expression occurs on the specified topic, the
service will be started by Application
Framework and notified about trigger
element.

triggerOnAppearance boolean If true, the service will be activated on
occurance of the new value, if false – the
service will be activated on removal of the
value from Integration Layer.

Table A. 4: Attribute description of the data structure KeyOnTopicTrigger

ServiceActivationConfig

<struct name="ServiceActivationConfig">

GA 635900 Page 30 of 37

 <attr name=”timerConfigs” type=”string” maxOccurs=”unbounded” attrId=”1”/>

 <attr name=”averageLoadPercent” type=”uint32” default=”0” attrId=”2”/>

 <attr name=”keyTriggers” type=”KeyOnTopicTrigger” containment=”true”

maxOccurs=”unbounded” attrId=”3”/>

 <attr name=”topicTriggers” type=”string” maxOccurs=”unbounded”

attrId=”4”/>

 <attr name=”spareInstances” type=”uint32” default=”0” attrId=”5”/>

 <attr name=”minActiveInstances” type=”uint32” default=”0”

attrId=”6”/>

</struct>

Name Type Description
timerConfigs String [0..*] Configuration of activation times in

cron-format [CRON 2017]
averageLoadPercent uint32 If not 0, the Application Framework

would start additional instances and
stop running instances to ensure the
specified averageLoad in % as
reported by the service in its state-
message.

keyTriggers KeyOnTopicTrigger

[0..*]
See above.

topicTriggers string [0..*] As soon as a new Topic with an ID
matching to one of the topicTriggers
is created (a service publishes its
state) the service will be activated
together with the trigger-topic.

spareInstances uint32 For services with long activation
time, the application Framework can
pre-start
“spareInstances“ bundles with
inactive services.

hotStandbyInstances uint32 For essential services the
Application Framework can pre-start
a set of bundles with services in
“Passive”-State (s. below). If an
active service instance misses its
heart-beats the Application
Framework deactivates the active
Service instance and activates the
passive one.

minActiveInstances uint32 Application Framework ensures this
amount of instances to be started
and in state Active.

Table A.5: Attribute of the data structure ServiceActivationConfig

ServiceConfig

<struct name=”ServiceConfig”>

GA 635900 Page 31 of 37

 <attr name=”id” type=”string” id=”true” attrId=”1”/>

 <attr name=”typeId” type=”string” attrId=”2”/>

 <attr name=”readableName” type=”string” attrId=”3”/>

 <attr name=”description” type=”string” attrId=”4”/>

 <attr name=”heartbeatMS” type=”uint32” default=”0” attrId=”5”/>

 <attr name=”singleton” type=”boolean” default=”false” attrId=”6”/>

 <attr name=”activationConfig” type=”ServiceActivationConfig”

containment=”true” attrId=”7”/>

 <attr name=”topics” type=”TopicConfig” containment=”true”

maxOccurs=”unbounded” attrId=”8”/>

 <attr name=”privateConfigFileURI” type=”string” attrId=”9”/>

</struct>

Name Type Description
id string A unique ID of the logical Service in the context of

one Integration Layer. It could be an UUID.
typeId string An id of a service type known to the bundle, so the

bundle is able to activate the write service. The
difference to the id-attribute is, that typeId is
independent from the connected Topics – several
services can share the same typeId.

readableName string Human understandable representation of the
service function.

description string Supporting description for the system integrator
and system maintenance.

heartbeatMS uint32 If value > 0 specified, the bundle containing the
service should publish its state every heartbeatMS
millisecond. Missing heartbeats would be used for
activation of a replacement service instance.

singleton boolean Specifies, if only one instance of this service is
allowed to be in state Active (typically means to
allow writing to the output-Topics). The Application
Framework is responsible to ensure this
functionality.

activationCon

fig
ServiceActivatio
nConfig

s. above. If activationConfig is not provided, the AF
will ensure the service to run always as one
instance.

topics TopicConfig
[0..inf]

s. above.

privateTopicC

onfigURI
string Represents a link to vendor specific configuration

file installed locally on the Node. It could contain
some private information and protected by the OS-
means (read/write access control).

Table A.6: Attribute description of the data structure ServiceConfig

BundleDeployment

<struct name=”BundleDeployment”>

GA 635900 Page 32 of 37

 <attr name=”id” type=”string” key=”true” attrId=”1”/>

 <attr name=”type” type=”BundleType” attrId=”2”/>

 <attr name=”nodeIds” type=”string” attrId=”3”/>

 <attr name=”serviceIds” type=”string” maxOccurs=”unbounded”

attrId=”4”/>

 <attr name=”imageId” type=”string” attrId=”5”/>

 <attr name=”executableId” type=”string” attrId=”6”/>

 <attr name=”workingDirPath” type=”string” attrId=”7”/>

 <attr name=”entryPoint” type=”string” attrId=”8”/>

 <attr name=”cpuQuotaPercent” type=”uint32” attrId=”9”/>

 <attr name=”ramQuotaMB” type=”uint32” attrId=”10”/>

 <attr name=”runtimeProduct” type=”string” attrId=”11”/>

 <attr name=”runtimeVersion” type=”string” attrId=”12”/>

</struct>

Attribute name Type Description
nodeIds string [0..*] Identifiers of the nodes, where the bundle is

deployed.
serviceIds string [0..*] Ids of the services listed on AFLogicalView

incorporated into the bundle.
imageId string Depending on Bundle type the value represents:

- URL to the archive (JAR, DLL, EXE)
- ID of the Docker Image
Application Framework would use this value to
download the Bundle-Archive and install on the local
drive assigned for the Node-Manager. Docker-Images
will be handled by the Docker-Infrastructure.

executableId string Depending on Bundle type the value represents:
- Executable file *.exe/*.cmd/*.sh/*
- ID of the Docker Container
- Jar file
- DLL file

workingDirPath string Specifies relative path of the working directory. The
basis path will be the deployment directory. This
attribute is relevant for executable bundles only.

Type BundleType See below.
entryPoint String Entry point specifies the class or function that shall

be used for starting in case if the bundle type is DLL
or JAR.

cpuQuotaPercent uint32 If > 0, the Application Framework would start the
bundle with the limitation of CPU usage.

ramQuotaMB uint32 If > 0, the Application Framework would start the
bundle with the limitation of RAM usage.

runtimeProduct string Optional name of the run time product like
VirtualMachine, Vmware, Docker

runtimeVersion string Optional field which allows the system administrator
to decide, if the used bundle is compatible with the

GA 635900 Page 33 of 37

Attribute name Type Description

system installed on the Node.
Table A.7: Attribute of the BundleDeployment data structure

<enum name=”BundleType”>

 <enumerator name=”BUNDLE_EXE” value=”0”/>

 <enumerator name=”BUNDLE_DLL” value=”1”/>

 <enumerator name=”BUNDLE_JAR” value=”2”/>

 <enumerator name=”BUNDLE_SHELL_CMD” value=”3”/>

 <enumerator name=”BUNDLE_DOCKER_IMAGE” value=”4”/>

 <enumerator name=”BUNDLE_VIRTUALBOX_IMAGE” value=”5”/>

 <enumerator name=”BUNDLE_WMWARE_IMAGE” value=”6”/>

</enum>

DeploymentStatus

<struct name=”DeploymentStatus”>

 <attr name=”bundleId” type=”string” attrId=”1”/>

 <attr name=”bundleTimestamp” type=”timestamp” attrId=”2”/>

 <attr name=”step” type=”DeploymentStep” attrId=”3”/>

 <attr name=”stepPercent” type=”int32” default=”0” attrId=”4”/>

</struct>

Each deployment step can take several seconds, so it is introduced the step completion

attribute.

Attribute name Type Description
bundleId string Identifiers of the bundle listed on

AFDeploymentView.
bundleTimestamp string Timestamp of the key-value containing the

bundleId. It is used by the Application
Framework to assign the current bundle
deployment state to the “command” – after
modification of the BundleDeployment-
Structure it takes several milliseconds, until the
NodeManager publishes the state of
implementation of this “command”.

step DeploymentStep For bundles EXE, JAR, DLL we have three
deployment steps. Docker infrastructure
combines them together. At the end of the
deployment process the state shall be
DEPLOYMENT_FINISHED for each bundle type.

stepPercent int32 0 .. 100% represents the normal behaviour.
-1 represents failed step.

Table A.8: Attributes of the data structure DeploymentStatus
<enum name=”DeploymentStep”>

 <enumerator name=”DEPLOYMENT_DOWNLOAD” value=”0”/>

 <enumerator name=”DEPLOYMENT_UNZIP” value=”1”/>

 <enumerator name=”DEPLOYMENT_POSTPROCESSING” value=”2”/>

 <enumerator name=”DEPLOYMENT_FINISHED” value=”3”/>

GA 635900 Page 34 of 37

 <enumerator name=”DEPLOYMENT_REMOVED” value=”4”/>

</enum>

NodeState

<struct name=”NodeState”>

 ...

 <attr name=”deployments” type=” DeploymentStatus”

containment=”true” maxOccurs=”unbounded”/>

 <attr name=”deployedTimestamp” type=”timestamp”/>

 ...

</struct>

In the NodeState-Structure the deployment part is represented by two attributes:

 deployments – representing status of currently deployed bundles during the

deployment process;

 deployedTimestamp – represents a time stamp before which all required

deployments from AFDeploymentView are successfully implemented.

BundleExecution

<struct name=”BundleExecution”>

 <attr name=”bundleId” type=”string“ attrId=”1”/>

 <attr name=”nodeId” type=”string” attrId=”2”/>

 <attr name=”heartbeatMS” type=”uint32” default=”0” attrId=”3”/>

 <attr name=”services” type=”ServiceExecution” containment=”true”

maxOccurs=”unbounded” attrId=”4”/>

</struct>

Attribute name Type Description
bundleId string Ids of the bundle listed on

AFDeploymentView.
nodeId string Id of the current Node
heartbeatMS uint32 The Bundle shall publish its state with the

heartbeatMS [in milliseconds], which will be
calculated from the required heartbeats of
the containing active services by the
application framework.
0 – no heartbeats are required, publish state
on modification only.

services ServiceExecution [0..*] s. above
Table A.9: Attributes of the data structure BundleExecution

<enum name=”ServiceActivityState”>

 <enumerator name=”SERVICE_NOT_STARTED” value=”0”/>

 <enumerator name=”SERVICE_RUNNING” value=”1”/>

 <enumerator name=”SERVICE_PASSIVE” value=”2”/>

</enum>

GA 635900 Page 35 of 37

Enumerator name Description

SERVICE_NOT_STARTED The service is not activated.

SERVICE_RUNNING The service reads and writes according to its logic.

SERVICE_PASSIVE The service subscribed and received all required input

and configuration and is ready to start writing. The

state represents hot standby of the service.

Table A.10: States of activity of a service in a bundle

BundleStartStatus

<struct name=”BundleStartStatus”>

 <attr name=”bundleId” type=”string” attrId=”1”/>

 <attr name=”bundleStartTimestamp” type=”timestamp” attrId=”2”/>

 <attr name=”startState” type=”BundleStartState” attrId=”3”/>

 <attr name=”returnCode” type=”int32” default=”0” attrId=”4”/>

</struct>

<struct name=”NodeState”>

 ...

 <attr name=”bundleStarts” type=”BundleStartStatus”

containment=”true” maxOccurs=”unbounded”/>

 <attr name=”bundleStartTimestamp” type=”timestamp”/>

 ...

</struct>

Attribute name Type Description
bundleId string Ids of the bundle listed on

AFDeploymentView.
bundleStartTimestamp timestamp The timestamp of the BundleExecution-

key,value which is taken into account.
startState BundleStartState Function is obvious from the enumerator

names.
returnCode int32 Represents the return code after the

startState reached BUNDLE_FINISHED.
Value = 0 means successful finish.

Table A.11: Attributes of the BundleStartStatus

<enum name=”BundleStartState”>

 <enumerator name=”BUNDLE_NOT_STARTED” value=”0”/>

 <enumerator name=”BUNDLE_STARTING” value=”1”/>

 <enumerator name=”BUNDLE_START_FAILED” value=”2”/>

 <enumerator name=”BUNDLE_STARTED” value=”3”/>

 <enumerator name=”BUNDLE_FINISHED” value=”4”/>

GA 635900 Page 36 of 37

</enum>

NodeState

<struct name=”NodeState”>

 <attr name=”nodeId” type=”string” key=”yes” attrId=”1”/>

 <attr name=”deployments” type=”DeploymentStatus” containment=”true”

maxOccurs=”unbounded” attrId=”2”/>

 <attr name=”deployedTimestamp” type=”timestamp” attrId=”3”/>

 <attr name=”bundleStarts” type=”BundleStartStatus”

containment=”true” maxOccurs=”unbounded” attrId=”4”/>

 <attr name=”bundleStartTimestamp” type=”timestamp” attrId=”5”/>

 <attr name=”cpuLoadPercent” type=”uint32” default=”0” attrId=”6”/>

 <attr name=”freeRamMB” type=”uint32” default=”0” attrId=”7”/>

 <attr name=”sendRateKBpSec” type=”uint32” default=”0” attrId=”8”/

 <attr name=”receiveRateKBpSec” type=”uint32” default=”0”

attrId=”9”/>

</struct>

Attribute name Type Description
nodeId string Node id.
deployments DeploymentStatus See section 7.1
deploymentTimestamp Timestamp “Version”-id of the AFDeploymentView

the Node has successfully implemented
(see Section 7.1)

bundleStarts BundleStartStatus See section 7.2
bundleStartTimestamp Timestamp “Version”-id of the AFRunView the Node

has successfully implemented (see
section 7.2).

cpuLoadPercent uint32 CPU load over all cores and CPU-
Sockets.

freeRamMB uint32 Free RAM in MB.
sendRateKBpSec uint32 Send statistics over all network

interfaces.
receiveRateKBpSec uint32 Receive statistics over all network

interfaces.
Table A.12: Attributes of the data structure NodeState

BundleState

<struct name=”BundleState”>

 <attr name=”id” type=”string” attrId=”1”/>

 <attr name=”services” type=”ServiceState” containment=”true”

maxOccurs=”unbounded” attrId=”2”/>

GA 635900 Page 37 of 37

</struct>

Attribute name Type Description
serviced string Identifier of the service as listed in the Topic

AFRunView.
status String current service status (s. above).
Id String Bundle id as listed in AFRunView.
services ServiceState Current state of the offered services.

Table A.13: Attributes of the data structure BundleState

ServiceState

<struct name=”ServiceState”>

 <attr name=”serviceId” type=”string” key=”true” attrId=”1”/>

 <attr name=”status” type=”ServiceRunStatus” attrId=”2”/>

</struct>

<enum name=”ServiceRunStatus”>

 <enumerator name=”SERVICE_NOT_STARTED” value=”0”/>

 <enumerator name=”SERVICE_RUNNING” value=”1”/>

 <enumerator name=”SERVICE_PASSIVE” value=”2”/>

 <enumerator name=”SERVICE_FINISHED” value=”3”/>

</enum>

Name Description
SERVICE_NOT_STARTED List of all not started services which were required by

AFRunView. Internal not started services will not be
announced.

SERVICE_RUNNING Service is in running state
SERVICE_PASSIVE Service is in hot-standby state.
SERVICE_FINISHED Service is intended for batch-processing and it fulfilled its task.

The AFManager uses this state to decide to stop the service or
the entire bundle. The service is not allowed to stop itself
without a “command” on AFRunView.

Table A.14: Enumerators of ServiceRunStatus

