

In2Rail

Project Title: INNOVATIVE INTELLIGENT RAIL

Starting date: 01/05/2015

Duration in months: 36

Call (part) identifier: H2020-MG-2014

Grant agreement no: 635900

Deliverable D8.4

Interface Control Document for Integration Layer Interfaces,

external/Web interfaces and Dynamic Demand Service

Due date of deliverable Month 36

Actual submission date 16-04-2018

Organization name of lead contractor for this deliverable HC

Dissemination level PU

Revision Final

In2Rail Deliverable D8.4

Interface Control Document for Integration Layer Interfaces, external/Web interfaces and

Dynamic Demand Service

Authors

 Details of contribution

Author(s) HaCon Ing. (HC)

Sandra Kempf

Rolf Gooßmann

Coordination and Document
structure of D8.4
Contributions to Chapter 1-12
Author of Chapters 9.1, 9.2, 9.4 and
9.5

Contributor(s) Siemens (SIE)

Stefan Wegele

Author of Chapters 6, 8 and 10.2
Contributions to Chapter 1-12

Bombardier Transportation

(BT)

Roland Kuhn

Martin Karlsson

Zbiewniew Dyksy

Author of Chapters 9.3
Contributions to Chapter 1-12

CAF Signalling (CAF)

Carlos Sicre Vara de Rey

Manuel Castro Viñas

Contributions to Chapters 1-12

Ansaldo STS (ASTS)

Gian Luigi Zanella

Matteo Pinasco

Author of Chapter 7
Contributions to Chapter 1-12

AZD Praha s.r.o. (AZD)

Martin Bojda

Michal Žemlička

Martin Růžička

Contributions to Chapter 1-12

Thales (THA)

Christoph Bücker

Vishal Bhatt

Contributions to Chapter 1-12

GA 635900 Page 3 of 74

Executive Summary

The overall aim of the In2Rail project is to set the foundation for a resilient, cost-efficient,

high capacity, and digitalised European Rail Network.

Intelligent Mobility Management (I2M), a sub-project of I2R, is one of the three technical

sub-projects and comprising Work Package 8 (WP8). WP8 addresses and develops a

standardised integrated ICT environment capable of supporting diverse TMS dispatching

services and operational systems. It also includes standard interfaces to external systems

outside TMS/dispatching (for other railway management systems and transport modes) with

a plug-and-play framework for TMS/dispatching applications.

WP8 represents the part of I²R lighthouse project to Shift2Rail IP2 and CCA which addresses

works which are key inputs to S2R TD2.9 “Evolution of Traffic Management System” and CCA

WA4.2 Integrated Mobility. All deliverables from WP8 will form the base for proceeding

works in X2RAIL-2. WP6 “Traffic Management System” (IP2) and IMPACT-2 WP7 “Integrated

Mobility” (CCA).

The current document corresponds to the last two deliverables inside WP8, and is focused in

the description of the required Data structure for the external and internal Interfaces of the

Integration Layer.

The research has been conducted by all partners of WP8, and the inputs have been

consolidated in this document.

GA 635900 Page 4 of 74

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3

ABBREVIATIONS AND ACRONYMS 6

1 BACKGROUND 7

2 OBJECTIVE / AIM 8

3 PURPOSE AND STRUCTURE OF THE DOCUMENT 10

4 INTEGRATION LAYER API 11

4.1 IL_CLIENT 12

4.1.1 Login to Integration Layer 13

4.1.2 Get topic to receive and send data 13

4.1.3 Dispose topic 16

4.1.4 Register data type 16

4.1.5 Retrieve message schemata 16

4.1.6 Get message converter 17

4.2 IL_TOPIC 17

4.2.1 Key-value-pair message 18

4.3 IL_LISTENER 18

4.4 IL_MESSAGECONVERTER 19

4.4.1 Conversion from proprietary to standard representation 19

4.4.2 Convertion from standard to proprietary representation 19

4.5 IL_OUTSTREAM 20

4.6 FACTORY FUNCTIONS 20

5 INTEGRATION LAYER SECURITY (SESSION MANAGEMENT) 21

5.1 DEFINITIONS AND ASSUMPTIONS 21

5.1.1 Definition of AF session 21

5.1.2 Definition of end-user 21

5.1.3 Definition of reservation 21

5.1.4 Definition of access permission 21

5.1.5 Assumptions 21

5.2 FUNCTIONAL DESCRIPTION OF SESSION MANAGEMENT 22

5.3 PROPOSED SOLUTION 23

5.3.1 Access permissions and Reservations on CDM 23

5.3.2 AF session manager 24

5.3.3 Wrapper implementation hints 26

GA 635900 Page 5 of 74

5.3.4 Overall description of the proposed solution 28

6 SANDBOX/VERSION MANAGEMENT IN IL 29

6.1 INTRODUCTION 29

6.2 INTERFACE SPECIFICATION 30

6.3 TRANSACTIONS MANAGEMENT IN IL 32

7 INTEGRATION LAYER TOPICS 34

7.1 INFRASTRUCTURE TOPICS 34

7.2 TIMETABLE TOPICS 35

7.2.1 Requirements 36

7.2.2 Timetable schema in RailML 2.3 38

7.2.3 Proposed operational timetable representation 43

7.3 TRAFFIC CONTROL TOPICS 46

7.3.1 Functional Architecture based on In Memory Data-Grid technology 46

7.3.2 Services Management 47

7.3.3 Communication Process TMS - Signalling Infrastructure 48

7.3.4 Traffic Control related Topics 48

7.3.5 Life Sign 49

7.3.6 Train Control and Train State 50

7.3.7 TSR State and Desired TSR 52

7.3.8 Object State and Desired Object 54

7.3.9 Desired Object Topic 57

7.3.10 Route State and Route Desired 58

7.3.11 Alarm Topic 62

7.4 ENERGY MANAGEMENT TOPICS 62

7.4.1 Other Topics involved 63

7.5 EXTERNAL SERVICES (WEB-IF) TOPICS 63

7.5.1 Weather forecast/report services 63

7.5.2 Dynamic Demand services 65

7.5.3 Passenger information services 69

8 CONCLUSIONS 71

9 GLOSSARY 72

10 REFERENCES 74

GA 635900 Page 6 of 74

Abbreviations and acronyms

Abbreviation / Acronyms Description

AF Application Framework

API Application Programming Interface

ATO Automated Train Operation

CCS Control & Command System (Signalling)

CDM Canonical Data Model

ETA Estimated Time of Arrival

ETCS European Train Control System

ICT Information and communications technology

ICD Interface Control Document

IF Interface

IL Integration Layer

ILS Interlocking

IM Infrastructure Manager

IMDG In-Memory Data Grid

LX Level Crossing

MA Movement Authority

OffPP Offline Production Plan

OnPP Online Production Plan

P2P Point-to-Point

QoS Quality of Service

RBC Radio Block Centre

RTTP Real Time Traffic Plan

S2R Shift2Rail

SiB Signal Board

SQL Structured Query Language

S&P Subscribe and Publish

TAF TSI Telematics applications for freight service

TAP TSI Telematics applications for passenger service

TMS Traffic Management System

TRL Technical Readiness Level

TSR Temporary Speed Restriction

UML Unified Modelling Language

WP Work Package

XML Extensible Markup Language

GA 635900 Page 7 of 74

1 Background

The products and systems for Traffic Management available on the market from the various

supply sources usually do not use standardized data structures and interfaces for

communicating within a TMS or to external services. Standardization in this area can only be

observed for certain interfaces with external services such as, e.g., TAF/TAP TSI or UIC 407.

This leads to enormous one-time efforts and cost to link sub-systems and products of

different suppliers.

Cost savings linked to the reduction of these non-recurrent cost are considered to reach up

to 10% of the total project cost if combinations of sub-systems would use a standardized ICT

structure are applied within the overall system.

Therefore, the design of a communication platform with standardised interfaces to connect

the TMS with internal and external services or systems is a key target for In2Rail and the

preceding S2R activities.

In the frame of specifying and developing a new integrated and standardized ICT structure

for rail operation services the standardization this deliverable is the first step towards the

required data structure and message definition syntax for the interfaces between the TMS

and internal and external systems.

GA 635900 Page 8 of 74

2 Objective / Aim

WP8 constitutes one of the issues in the framework of the Project titled “Innovative

Intelligent Rail” (Project Acronym: In2Rail; Grant Agreement No 635900).

The overall objective of WP8 is to address and develop a standardised integrated ICT

environment capable of supporting diverse TMS dispatching services and operational

systems. Additionally, WP8 deals with standard interfaces to external systems outside

TMS/dispatching and with a plug-and-play framework for TMS/Dispatching applications.

The WP8 includes two areas; the Integration Layer (IL) and the Application Framework (AF)

for applications. Each area is devoted to specific subtopics, which are shown in Figure 2.1.

Figure 2.1: Subtopics of WP8

The long term objective for the project is to provide a standardised integrated ICT

environment supporting TMS applications connected to other multimodal operational

systems (see Figure 2.2).

GA 635900 Page 9 of 74

Figure 2.2: Overview of Integration Layer as communication platform

The objective of this Interface Control Document (ICD) is to describe the both-way

interfacing between the Integration Layer and external and internal systems and hence

avoiding complex and costly function and data mapping processes within the Interface

structure.

Deliverable 8.4 in combination with [D8.7] is the first step towards standardisation

Interfaces in the traffic management and will be followed from proceeding activities in

X2RAIL-2, WP6 and IMPACT-2, WP7 project of Shift2Rail including development of

prototypes up to TRL6.

GA 635900 Page 10 of 74

3 Purpose and structure of the document

The aim of this document is to provide a formal description of the required Data structures

for the external and internal Interfaces of the Integration Layer.

This document together with [D8.3] shall enable fulfilment of the requirements specified in

[D8.1]. The deliverable [D8.3] provides functional description of the Integration Layer with

reasoning for architectural decisions. The underlying data model definition, also called the

“Canonical Data Model” (CDM), can be found in [CDM].

This document is structured as follows:

 Chapter 6 describes the Integration Layer API; how systems/modules can interact

with the IL;

 Chapter 7 contains a description of the security that should be used for the IL;

 Chapter 8 gives an overview about the sandbox and versioning of the Integration

Layer;

 Chapter 9 focuses on the different Topics used by the Integration Layer for

communication;

 Chapter 10 consists of the conclusion of the document.

GA 635900 Page 11 of 74

4 Integration Layer API

The Integration Layer has two main functionalities:

 reliable management of object states with no single point of failure;

 allow modification of objects by the clients and notify subscribed clients about any

objects modifications.

There are several products and projects on the market [ZooKeeper] [Hazelcast] [Redis]

[OpenSplice][ConnexDDS]. Most of them use specific API – either precompiled library with

interface or using generated source code.

To allow using any suitable product from the market and avoid a vendor lock-in one generic

API shall be created, covering only functionality, required by Integration Layer. The API shall

be provided as re-usable library or a set of. In this case services connected to the Integration

Layer can be created and offered on the market as products, to be used without adaptation

with any compatible implementation of IL.

The proposed API is relatively simple and consists of the classes listed in Figure 4.1. The term

IL_ is used as a prefix.

Figure 4.1: Class diagramm of API

The process of subscription is shown in Figure 4.2.

GA 635900 Page 12 of 74

Figure 4.2: Sequence diagram for communication with API

4.1 IL_Client

The main responsibility of IL_Client class is to setup access to Integration Layer in method

login and to be a container for the other classes of the API.

typedef enum { MSG_TYPE_RAW,

MSG_TYPE_PROTOBUF,

 MSG_TYPE_JSON,

 MSG_TYPE_XML,

 MSG_TYPE_ASN1} IL_EncodingFormat;

class IL_Client

{

public:

 virtual bool login(const char *jsonConfig, IL_Error & error) = 0;

 virtual IL_Topic* getTopic(const char *topicId,

const char* topicConfig, IL_Error & error) = 0;

 virtual void dispose(IL_Topic* topic) = 0;

 virtual bool registerDataType(const char *cdmModuleName, const char

*cdmModuleContent, IL_Error & error) = 0;

 virtual bool getMessageSchema(const char *cdmModuleName,

IL_EncodingFormat fmt, IL_OutStream & os, IL_Error & error) = 0;

 virtual IL_MessageConverter* messageConverter(IL_EncodingFormat fmt) = 0;

};

IL_Client IL_Topic Application

login

Success/failure

getTopic

setListener(this)

putValue(k,v)

valueChanged(k,v)

removeValue(k)

keyAlive(k, false)

disposeTopic

GA 635900 Page 13 of 74

4.1.1 Login to Integration Layer

bool IL_Client::login(const char *jsonConfig, IL_Error & error);

Description

Authorises the client to Integration Layer to start subscriptions and data modifications.

Parameters

Parameter Type IN/Out Description

jsonConfig
const char * (zero
terminated string)

In

Contains a data structure with
login parameters and product
specific information (like IP
addresses of the cluster nodes).

error IL_Error & Out
Provides an error code and the
error message in case of failure.

Return value

Value Description

True Login successful.

False Login unsuccessful, error results are in error attribute.

4.1.2 Get topic to receive and send data

IL_Topic* getTopic(const char *topicId, const char* topicConfig, IL_Error &

error);

Description

Request of a topic from Integration Layer.

Parameters

Parameter Type IN/Out Description

topicId
const char * (zero
terminated string)

In Id of the topic

topicConfig const char* In
Json representation of the data
structure TopicConfig shown in
the table below.

error IL_Error & Out
Returns the error code and the
error message in case of failed
request.

Return value

Pointer to IL_Topic in case of success.

Nil-pointer in case of failure.

Data structure defining topicConfig parameter of IL_Client::getTopic.

<struct name="TopicConfig">

GA 635900 Page 14 of 74

 <attr name="id" type="string" key="true" id="1"/>

 <attr name="dataType" type="string" id="2"/>

 <attr name="qos" type="QoS" containment="true" id="3"/>

 <attr name="modelAddressPrefix" type="string" id="4"/>

</struct>

Attribute Description

id
Topic id. To support the OMG standard DDS, the id is
allowed to contain only ASCII alpha-numeric values: [0-
9][a-zA-Z].

dataType
Represents the data type in module.message notation,
defined in a proto-File.

qos
Quality of services is a structure described below. It is
influenced by OMG DDS specification, version 1.4.

modelAddressPrefix

According to the canonical data model, the data objects
managed in Topics build an object tree. Any object of
the tree can be addressed starting from the root node.
The address of each object in the topic is represented
as modelAddressPrefix/key which allows the clients to
find any object in any topic by its address.

The data structure Quality of Service (QoS) allows configuration the topic behaviour.

<struct name="QoS">

 <attr name="reliableTransport" type="boolean" default="true" attrId ="1"/>

 <attr name="durability" type="Durability" default="VOLATILE" attrId ="2"/>

 <attr name="latencyBudget" type="uint32" attrId="3" default="0"/>

 <attr name="transportPriority" type="int32" attrId ="4" default="0"/>

 <attr name="lifespan" type="uint32" default="0" attrId ="5"/>

</struct>

Attribute Description

reliableTransport

There are two kinds of data transport protocols
“Reliable” and “best effort”. If the value is “true”, the
transport protocol contains acknowledge and resend
functionality ensuring, that each subscriber receives a
message. With “best effort” some messages can be
dropped with the advantage of increased performance.
A typical use case for “best effort” could be a Voice-
over-IP application.

durability
This is a key attribute defining Topic behaviour. Single
values are described below.

latencyBudget

The attribute is defined in OMG DDS. It specifies the
maximum acceptable delay in milliseconds from the
time the data is written until the listener is notified
about it. It is a hint for the Integration Layer, which is
used to combine several messages into one bulk often
increasing transfer performance by an order of
magnitude.

livespan Defines the maximum duration of validity of the data

GA 635900 Page 15 of 74

Attribute Description

after it was written by the writer. The default value is 0,
which means “infinite”. As any object contains a
timestamp from the sender side, a reader can use this
attribute to decide, if the object contains valid data.
Integration Layer uses this attribute to find and remove
outdated data objects by a garbage collector service.

transportPriority
The attribute provides a hint to the Integration Layer
how to set the priority of the underlying transport.

The durability attribute of QoS is the main field specifying behaviour of the topic. It describes,

if the data should outlive their writing time.

<enum name="Durability">

 <enumerator name="VOLATILE" value="0"/>

 <enumerator name="TRANSIENT_SESSION" value="1"/>

 <enumerator name="TRANSIENT" value="2"/>

 <enumerator name="PERSISTENT" value="3"/>

</enum>

Attibute Description

VOLATILE

Means that the data can be removed from Integration
Layer as soon as all existing subscribers received it. The
typical use case is notification about some operations.
Using this attribute the Integration Layer provides a
typical publish-subscribe communication topic for
message based communication.

TRANSIENT_SESSION

The data will have the same live-time as the writer of
the data – as long as the writer is connected to the
Integration Layer the objects are provided to late-
joiners. This attribute annotates, which data shall be
managed by a session management service and
removed as soon as the writer disconnects from IL.

TRANSIENT

The data will be managed in memory of the Integration
Layer and will survive disconnection/crash of the writer
application. If all the nodes building Integration Layer
will go down, the data will be lost.

PERSISTENT

The data is kept on permanent storage, so it will survive
a system down time. Depending on Integration Layer it
can be a function of the writer or a special service for
storage and recovering of the Integration Layer.

The dispose method of the IL_Client is used to dispose Topics created by this IL_Client. After

disposal the Topic will stop receiving notification and sending them to the listener.

The methods login and getTopic have the attribute of type IL_Error. Its purpose is

the “emulation” of missing exception support over dynamic libraries. In case of an error, the

method would return false/null and in the IL_Error-data structure would contain the type of

the error and an error message. The implementation of the IL_Error is as follows.

GA 635900 Page 16 of 74

class IL_Error {

public:

 int code;

 char *message;

 size_t messageCapacity;

 /**

 * Constant indicates that an operation was successfully performed.

 */

 static int const SUCCESS = 0;

 /**

 * Constant indicates that a generic error occured.

 */

 static const int ERROR_GENERIC = 1;

 /**

 * The buffer provided to the method is not big enough

 */

 static const int ERROR_NOT_SUFFICIENT_BUFFER = 2;

};

Additional types of errors will be identified and extended during further Shift2rail projects.

4.1.3 Dispose topic

void IL_Client::dispose(IL_Topic* topic);

Parameter IL_Topic* topic defines the topic to dispose. The pointer to IL_Topic is not

allowed to be deleted in any other place.

4.1.4 Register data type

bool IL_Client::registerDataType(const char *cdmModuleName, const char

*cdmModuleContent, IL_Error & error) = 0;

Description

The IL_MessageConverter to start working require a central definition of the supported data

types in xml format. Here the single files containing such definitions are sent to IL_Client and

its children.

Parameters

Parameter Type IN/Out Description

cdmModuleName const char * In
Contains the module name of
the data type specification.

cdmModuleContent const char* In
Contains XML specification of
the data format used for
CDM.

error IL_Error & Out
Contains error code and error
message in case of failure.

Return value

True – success, false – failure;

4.1.5 Retrieve message schemata

virtual bool getMessageSchema(const char *cdmModuleName, IL_EncodingFormat

fmt, IL_OutStream & os, IL_Error & error) = 0;

GA 635900 Page 17 of 74

The Integration Layer provides automatic validation of the message content inside of the

MessageConverter. To allow external validation of the messages and to simplify code

generation for parsers the IL_Client provides schemata converted from the Canonical Data

Model into the target serialisation format: .proto-files, Xml schema, JSON schema, ASN.1

message specification.

4.1.6 Get message converter

The last method IL_Client::messageConverter gives access to the message converters (s.

section 4.4). Both methods return references to objects are managed (incl. deleted) by

IL_Client – they are not created at each function call.

4.2 IL_Topic

The class IL_Topic provides an access point to modify key-value-objects and to subscribe to

these modifications.

class IL_Topic

{

public:

 virtual const char *id() const = 0;

 virtual IL_Client* parent() const = 0;

 virtual bool setListener(IL_Listener* listener, const char

*filterExpression, IL_Error & error) = 0;

 virtual IL_Listener* listener() const = 0;

 virtual const char *dataType() const = 0;

 virtual bool putValue(const IL_KVPair & kvp, IL_Error & error) = 0;

 virtual bool deleteKey(const char *key, IL_Error & error) = 0;

 virtual bool requestValue(const char *key, IL_Error & error) = 0;

protected:

 virtual ~IL_Topic() {}

};

Method Description

id
Returns Id of the topic used at construction by
IL_Client::getTopic.

parent
Returns pointer to the parent-IL_Client, which can be
used for disposal of the topic and to access
MessageConverter provided by the API.

setListener

Puts listener from the application to be notified about
modifications of the objects in the Topic.
filterExpression specifies a regular expression for keys –
only keys matching the filterExpression will be
distributed to the listener. Empty or zero value for
filterExpression means “distribute all values”.

listener Returns the current listener.

dataType
Returns the protobuf-type id provided to the Topic in
IL_Client::getTopic as attribute TopicConfig::dataType.

putValue Modifies the value, which must be provided in raw-

GA 635900 Page 18 of 74

Method Description

format (see section with MessageConverter).

deleteKey
Removes the key-value with the specified key from
Integration Layer. Subscribers will be notified about it.

requestValue

This is an auxiliary function. Some IL-implementations
send in case of modification of a value only its key,
expecting the client application to request the changed
value afterwards if it is interested in it. Other IL-
implementations send modified key and values
together. The function requestValue shall be called only
in the IL_Listener::keyAlive if the parameter “isAlive” is
true, which means the value is modified, but it shall be
extra requested. Providing this function allows
reduction of the network traffic for big values.

4.2.1 Key-value-pair message

struct IL_KVPair {

 const char *key;

 const char *rawValue;

 int rawValueSize;

int64 senderTimestamp;

const char **attributes;

};

Attribute Type Description

key const char * Key used by IL to identify objects.

rawValue const char* Value in proprietary (raw) format.

rawValueSize uint32 Length of the raw value.

senderTimestamp int64 Number of microseconds since epoch (1970.01.01)

attributes const char **

A list of pairs in form of “key”, “value”. The end of
the list is marked with nil-key. It represents an
extension point for future standardisation of the
meta-message information

4.3 IL_Listener

The IL_Listener provides the only way to receive values from the Integration Layer. Its

functions are called asynchronously from some threads created by the Integration Layer. The

Integration Layer expects that the client application spends max 100 milliseconds inside of

the methods.

class IL_Listener

{

public:

 virtual void valueArrived(const IL_KVPair & kvp, IL_Topic* topic) = 0;

 virtual void keyAlive(const char *key, bool isAlive, IL_Topic* topic) = 0;

 virtual void IL_Error(const IL_Error & error, IL_Topic* topic) = 0;

};

Method Description

valueArrived
Provides a key-value-pair in one of the following cases:
- The client application called topic.setListener (in another

thread)

GA 635900 Page 19 of 74

- The value was created on the Integration Layer
- The value was modified on the Integration Layer.

keyAlive

Provides the live-status of the key-value in Integration Layer if it
changed after the call topic.setListener. If the value of the attribute
isAlive is true, the client application has to call topic-
>requestValue(key) immediately or later if the application is still
interested in it. The requested value will be delivered over
valueArrived method asynchronously.

IL_Error
The call back function for any kind of errors like lost connections,
memory overflows etc. Specific errors will be defined during
Shift2rail projects.

4.4 IL_MessageConverter

Message converter shall create one of the standardised representations out of the

proprietary raw data format used in specific Integration Layer implementation.

class IL_MessageConverter

{

 virtual bool raw2value(const char *dataType, const char *raw, size_t

rawSize, IL_OutStream & os, IL_Error & error) = 0;

 virtual bool value2raw(const char *dataType, const char *value, size_t

valueSize, IL_OutStream & os, IL_Error & error) = 0;

};

4.4.1 Conversion from proprietary to standard representation

bool MessageConverter::raw2value(const char *dataType, const char *raw, size_t rawSize, IL_OutStream & os,

IL_Error & error);

Description

Writes converted value into the IL_OutStream.

Parameters

Parameter Type IN/Out Description

datatype const char * In
Defines the data format in Module.struct
format.

raw const char * In
Value prepared for IL/received from IL in raw
format

rawSize size_t In Length of the raw message

os IL_OutStream Out Output stream for the output value.

error IL_Error & Out
Contains error code and error message in
case of failure.

Return value

True in case of success, false – otherwise.

4.4.2 Convertion from standard to proprietary representation

bool MessageConverter::value2raw(const char *dataType, const char *value,

size_t valueSize, IL_OutStream & os, IL_Error & error);

Description

GA 635900 Page 20 of 74

Writes converted value into the OutStream.

Parameters

Parameter Type IN/Out Description

dataType const char * In
Defines the data format in
Module.struct format.

value const char * In
Value in one of the standard
formats to be converted to IL-
specific format.

valueSize size_t In
Length of the value message,
required at least for binary
standard formats.

os IL_OutStream Out
Output stream for the output
value.

error IL_Error & Out
Contains error code and error
message in case of failure.

Return value

True in case of success, false – otherwise.

4.5 IL_OutStream

class IL_OutStream

{

public:

 virtual bool getNextBuffer(const void ** data, int *size) = 0;

 virtual void ignoreLastBytes(int count) = 0;

 virtual int64 byteCount() const = 0;

};

Method Description

getNextBuffer
Returns pointer to the next allocated buffer. Return
true in case of success.

ignoreLastBytes
Notifies the IL_OutStream, that the writing is finished,
and the last count-bytes of the last getNextBuffer were
not used.

byteCount Returns current size of the stream.

An example implementation of the IL_OutStream can be found on Protobuf project as e.g.

StringOutputStream with a little different function names.

4.6 Factory functions

As most of the factory functions are integrated into IL_Client remain only two functions one

for creating IL_Client and one for its disposal:

IL_Client *createIL_Client();

void disposeIL_Client(IL_Client*);

GA 635900 Page 21 of 74

5 Integration Layer Security (Session Management)

This section describes session management is implemented. The session management is

enabled in cooperation by the Integration Layer and the Application Framework. Sessions

are provided to applications running in the context of the Application Framework; the

naming convention used reflects this fact.

5.1 Definitions and assumptions

5.1.1 Definition of AF session

The AF session allows an end-user to start a sequence of related operations on the data set

nodes after the end-user successfully completed its authentication on the system. In this

document, the authentication is referred as login.

Rationale: This definition is useful to describe how the term session is used in this section,

and to distinguish it from many other meaning the term has in current literature.

5.1.2 Definition of end-user

End-users are application running in the context of the AF and, by extension, human users

interacting with the aforementioned applications.

5.1.3 Definition of reservation

A reservation defines:

 the list of access permissions of the owner of the reservation over the selected CDM

Data Set node(s). The owner of the reservation may request read-only control to

delegate the protection of the reserved node to the mechanism in charge of verify if

node can be written on. This is useful when write request start from a third

application; in this case the application doesn’t need to check if the write should be

executed, it simply pass it to the wrapper that shall reject the write operation;

 the list of access permission the owner of the reservation grants to other end-user(s).

5.1.4 Definition of access permission

Access permission are: full control, read only, delete. Each end-user may have an associated

list of (node, access permissions…).

5.1.5 Assumptions

The following assumptions have been made:

1. the CDM Data Set nodes will be accessed only via the IL;

2. there’s a specialized AF component providing services for AF reservation management;

this component is referred as AF session manager. Services are provided via methods of

the API. The AF session manager is either an application running in the AF or a distributed

“logic” laying in the AF API used by the applications, see also [D8.6];

GA 635900 Page 22 of 74

3. access permission will be stored and accessed in the CDM Data Set, thus they will become

part of the CDM.

Rationale: This is an attempt to be free from the technology used to manage
authorization. No assumption is made on where the access permission will be stored in the
CDM; a replica of the CDM structure with nodes containing access permissions is an
option.

5.2 Functional description of session management

1. The end-user is able to start AF sessions after its authentication to the IL;

2. the end-user is free to start more than one AF session at the same time;

3. the AF session manager provides the end-users the following session management

methods: StartSession, EndSession, Reservation, Free, WatchDog, HandOver, TakeOver;

4. StartSession – the start session method return an AF session handle. Sessions keeps

tracks of all the reservations;

5. EndSession – the stop session method frees all the reserved nodes (see point 7);

6. SessionWatchDog – the watchdog method will rearm the watchdog timeout period on

the specified session handle. The AF session manager decrements and monitors the

watchdog of each session in order to terminate the session and to remove from data set

sandboxes not yet checked in;

Rationale: here the assumption is that sandboxes have a lifecycle similar to change sets of
a versioning system. Checked in means the fact that change sets are ready to be
committed on data set.

7. Reservation:

a. Reservation – the reservation method will reserve the requested list of nodes of the
Data Set, provided that the end-user is authorized to reserve them,

b. If successful, the reservation method returns a Reservation handle,
c. If unsuccessful, the reservation method returns the reason of failure (e.g. already

reserved by another end-user, type of access not authorized, not existing node),
d. More than one Reservation may be performed in the context of the same AF session,
e. If the end-user reserves a node, it will reserve all of its descendants,
f. The end-user may specify access rights for other users,
g. Free – the free method frees the reserved nodes. Free is an ad-hoc method that can

operate on reservation handles (i.e. all the nodes associated with the reservation
handle) or on single nodes,
Rationale: To help synchronization between concurrent reservation operations (i.e.
manage race condition) from different application, one application may reserve an
entire branch till needed, and then free some sub-branch nodes; note that this will
modify the reservation.

h. ReservationWatchDog – the watchdog method will rearm the watchdog timeout
period on the specified reservation handle. The AF session manager decrements and
monitors the watchdog of each reservation in order to free the nodes associated with
the handle;

8. Sandbox:

GA 635900 Page 23 of 74

a. Sandbox – the sandbox creation method will add a sandbox node to the Data Set
(please refer to Sandbox section),

b. If successful, the sandbox creation method returns a SandboxId,
c. Rationale: The SandboxId is an handle used in the following operations: i) automatic

garbage collection when a session is terminated; ii) sandbox or session
handover/takeover between users; iii) sandbox handover to AF components that
merge sandboxes,

d. If unsuccessful, the sandbox creator method returns the reason of failure (e.g. type of
permissions not granted, not existing path),

e. More than one Sandbox may be performed in the context of the same AF session;
9. HandOver – the handover is an ad-hoc method that operates on one AF session, AF

session reservations, or AF session sandboxes:

a. On AF session, it prepares the transfer of all the AF session reservations to another
specified AF session – see TakeOver,

b. On reservations, it prepares the transfer of the reservations to another specified AF
session – see TakeOver,

c. On Sandboxes, it prepares the transfer of the sandboxes to another specified AF
session – see TakeOver.

10. TakeOver – the takeover method is an ad-hoc method to acquire all the reservations of

another AF session, reservations or sandboxes belonging to other AF sections. Takeover

shall be executed in a specified time since the handover. TakeOver may be forcefully

executed by another session.

5.3 Proposed solution

In this section the following topic will be described:

 access permissions;

 reservation;

 AF session management;

 wrapper implementation hints.

The activity diagrams of this section are provided in order to show a conceptual view of the

different actors and activities; their actual implementation will depend on the final

architecture of the AF and IL.

5.3.1 Access permissions and Reservations on CDM

The Canonical Data Model instance consists of two parallel structures containing:

 values of data (Data Set);

 access permissions and reservation about data (Access Permissions Set).

The Access Permissions Set depends on two aspects:

 basic access rights assigned to users and groups (manged by authorization service);

 reservations assigned by the owner of the data nodes (dynamic attributes, managed

by AF session manager).

GA 635900 Page 24 of 74

The reservation parameters contained in Access Permissions Set are:

 Reservation handle list

 Users list and related access rights assigned by session owner

 Groups list and related access rights assigned by session owner

Access rights assigned by session owner must be compliant with the basic access rights

assigned by authorization service.

This solution is compliant with both IMDG and queue messaging systems that can be used to

implement the IL.

5.3.2 AF session manager

The AF session manager holds all the AF sessions and their related properties:

 session Id;

 session Owner;

 session Name (plain text name);

 session Start Timestamp;

 session Expected Duration;

 session watchdog timeout (i.e. watchdog period);

 reservation handle list:

- Reserved nodes list,

- Reservation watchdog timeout,

 SandboxId list.

The following UML activity diagram shows the behaviour of AF session manager for

reservations.

GA 635900 Page 25 of 74

Figure 5.1: AF Session Manager – activity diagram for Reservation

In the following UML activity diagram the behaviour of AF session manager for sandbox

creation is described.

 act AF Session Manager for Reserv ation

IL
 A

P
S

 C
A

C
H

E
 C

O
N

T
A

IN
E

R
A

F
 S

E
S

S
IO

N
 M

A
N

A
G

E
R

A
P

P
L

IC
A

T
IO

N
StartSessionRequest

CreateSession

SessionHandle

Reserv ationRequest

NodesAndPermissions

notes

SessionHandle

node1 list<user, granted access>

node2 list<user, granted access>

...

GetPermissions

ReturnPermissions

Permissions

notes

node1 permissions

node2 permissions

...

VerifyPermissions

End

WriteReserv ation

NewPermissions

notes

node1 permissions

node2 permissions

...

UpdatePermissions

UpdateSessionProperties

Reserv ationHandle

ReturnNACK

KO

OK

GA 635900 Page 26 of 74

Figure 5.2: AF Session Manager – activity diagram for Sandbox creation

In the above figures, the two processes of “Reservation” and “Sandbox creation” are

separately described for clarity: during normal operation, Reservation and Sandbox creation

may be interleaved in the same session. Due to the fact that Sandboxes are implemented as

nodes of the Data Set, reservation could be obviously applied to them.

5.3.3 Wrapper implementation hints

In the proposed solution, the wrapper of the IL is responsible to verify if the application (or

end-user) has the rights to perform the required action.

The following UML activity diagram shows an example of write authorisation, supposed that:

 the IL is implemented with an IMDG implementation of the IL is shown, and;

 the end-user has started an AF session.

 act AF Session Manager for Sandb...

IL
 D

A
T

A
 S

E
T

 C
A

C
H

E
 C

O
N

T
A

IN
E

R
A

F
 S

E
S

S
IO

N
 M

A
N

A
G

E
R

IL
 A

P
S

 C
A

C
H

E
 C

O
N

T
A

IN
E

R
A

P
P

L
IC

A
T

IO
N

StartSessionRequest

CreateSession

SessionId

CreateSandoxRequest

Sandbox

GetPermissions

ReturnPermissions

Permissions

notes

node1 permissions

node2 permissions

...

VerifyPermissions

WriteSandbox

Sandbox

UpdateSandbox

UpdateSessionProperties

ReturnNACK

SanboxId

End

WritePermissions

SandboxPermission

UpdatePermissions

KO

OK

GA 635900 Page 27 of 74

Figure 5.3: Activity diagram for Write permission checks

A generic application request the wrapper to write a new value of “data1”. The wrapper

accesses to the IL cache container (i.e. the place where the IMDG stores its key-value

elements) of “Access Permission Set” in order to acquire permission rights. The wrapper

performs the write operation on “Data Set” cache container only if the permission rights are

compliant with the required action.

 act Reserv ation Example

IL
 A

P
S

 C
A

C
H

E
 C

O
N

T
A

IN
E

R
IL

 D
A

T
A

 S
E

T
 C

A
C

H
E

 C
O

N
T

A
IN

E
R

W
R

A
P

P
E

R
A

P
P

L
IC

A
T

IO
N

data

notes

key = data1

user = userId

WriteRequest

GetData (data1)

ReturnValue (data1)

Permission rights

notes

Reservation

handle list

Users list

Groups list

VerifyPermissions

WriteData (data1)

ReturnNACK

End

data

notes

key = data1

value = value1

UpdateValue

ReturnACK

KO

OK

GA 635900 Page 28 of 74

5.3.4 Overall description of the proposed solution

Figure 5.4: Activity diagram for the proposed solution

The above activity diagram depicts the proposed solution, encompassing: the login to the IL,

the start of an AF session, and a reservation od some CDM Data Set nodes. Here, the

authentication of the user (UserValidation) is provided in cooperation by the IL and an

external authentication service.

 act Session for Reserv ation
A

F
 S

E
S

S
IO

N
 M

A
N

A
G

E
R

A
P

P
L

IC
A

T
IO

N
IL

A
U

T
H

E
N

T
IC

A
T

IO
N

 S
E

R
V

IC
E

LoginRequest

Credentials

UserValidationRequest

UserValidation

LoginConfirmation

IL_userId

StartSessionRequest

CreateSession

SessionId

The AF Reservation

manager update its

session parameters

Reserv ationRequest

NodesAndPermissions

notes

SessionId

node1 list<user,

granted access>

node2 list<user,

granted access>

...

WritePermissionsRequest

Permissions

notes

node1 permissions

node2 permissions

...

UpdatePermissions

UpdateSessionProperties

Session Id

Session Owner

Session Name

Session Start Timestamp

Session Expected Duration

Reservation handle list

Reserved nodes list

Reserv ationHandle

GA 635900 Page 29 of 74

6 Sandbox/Version management in IL

6.1 Introduction

In recent tenders for TMS there are requirements for support versioning of the Real Time

Traffic Plan (RTTP), like:

 create a new version of RTTP with a first modification initiated by an operator;

 provide a workflow for merging the locally modified version with the “master” RTTP;

 be able to restore RTTP to any past version before merging the modified RTTP.

For covering of this functionality for RTTP a special service is required. Instead of limiting the

service to “Versioning” of RTTP, a generic approach is specified, which is able to provide

version management for an arbitrary part of the CDM (e.g. to cover construction works on

Topology-Part of CDM).

The second aspect of version management is coverage of transactions. Integration Layer

provides access to the data by a (high performance) publish-subscribe pattern. The

drawback of this approach is that the client applications receive modifications

asynchronously, so clients are unable to identify the transaction boundaries (point in time,

when the data is claimed to be valid). Another issue represents the lack of transaction

support of many IMDG-products on the market.

To cope with these issues the “version management” functionality can be used: in the

context of TMS areas requiring transactional support, require explicitly “version

management” as well, e.g. RTTP. But “version management” of the data set covers all

aspects of the transaction in a perfect way, so that additional support of the transactions

from an IL-product is not needed. This allows selection of low-cost-solutions from the

market as basis for IL.

The approach behind the data-set versioning is not very different from the common Version

Management Systems like SVN, Git, HG, RTC. In the following we use the concept of

“Sandbox”, which comprises a sequence of changes, which applied after each other create

the current state of the data set (see Figure 6.1).

Figure 6.1: Sandbox = sequence of changes

The sandboxes can be stacked on each other creating branches. In Figure 6.2 the Sandbox B

is using Sandbox A as a basis. It means that the client application first has to apply all

changes in Sandbox A, and then all changes of Sandbox B.

Snapshot Delta 1 Delta 2 Delta 3

GA 635900 Page 30 of 74

Figure 6.2: Sandbox stacking: apply additional changes to the base-sandbox

6.2 Interface specification

To handle Sandbox functionality a dedicated Sandbox management service has to be

specified. On the Integration Layer several topics are required, divided into two groups:

 Sandboxes-Management-Topics handling creation and removal of the Sandboxes;

 ChangeSets-Management Topics handling change sets of a one specific Sandbox.

The list of the required topics is shown in Table 6.1.

Topic.addressPrefix Data type Description
/xxx/SBMgmt SM.SBMgmtCommand Request to create or removal

of Sandboxes

/xxx/SBList SM.SandboxInfo Contains the list of sandboxes
with their configuration.

/xxx/SBMgmtNotifications SM.RequestNotification Replies/notifications on
management commands for
creation and removal of
Sandboxes.

/xxx/MySandboxA/ChangeSets SM.ChangeSet A sequence of change sets
building a sandbox. Keys are
numbers in sequence starting
with 0 in hex-representation.

/xxx/MySandboxA/ChangeRequests SM.ChangeRequest A set of concurrent requests
from client applications. Keys
must be unique, e.g. random
strings or patterns like
/sender/id.

/xxx/MySandboxA/Notifications SM.RequestNotification Replys/notifications on
change requests. The key is
identical to the key of the
change request.

/xxx/MySandboxA/Snapshots SM.Snapshot Contains snapshots = a set of
changesets, which contains
only all previous changes. The
client can either apply all
previous changes or the
snapshot.

Table 6.1: Topics for sandbox management service

A class diagram with the part of canonical model representing Sandbox management

functionality is shown in Figure 6.3.

Snapshot Delta 1 Delta 2

Delta A

Sandbox A

Sandbox B Delta B

GA 635900 Page 31 of 74

Figure 6.3: Data structures for management of one sandbox in the module SM (SandboxManagement)

For the management of the set of sandboxes additional data structures are required (see

Figure 6.4).

Figure 6.4: Data structures for management of a set of sandboxes in module SM (SandboxManagement)

The sandboxes with attribute persisted equal to true, the topic containing the ChangeSets

will be persisted.

If the attribute mergeProhibited is false, the SandboxManagement service will try to merge

new commands with previous once. The clients must be able to apply modified ChangeSets.

If the attribute undoProhibited is false, removal of the ChangeSets from the topic has a

meaning of “undo” operation and the client applications shall be able to follow this request.

SandboxInfo

name: string

persisted: boolean

mergeProhibited: boolean

undoProhibited: boolean

basisSandbox

SBMgmtCommand

[0..1]

ChangeSet

Command CommandTreeItem

AnyValue <union>

boolValue: boolean

longValue: long

doubleValue: double

stringValue: string

objectReference: string

rawObject: bytes

[0..*] [0..*]

[1]

ChangeSetRequest

[1]

Snapshot

[0..*]

GA 635900 Page 32 of 74

In this case it has to keep the ChangeSets together with previous values either in memory or

locally persisted. A typical use case for enabled Undo-Sandboxes represent “small” private

sandboxes of the operators, so it is safe to keep previous values in memory without a risk of

a memory overflow. For the master sandbox the undo operation is typically prohibited.

A typical representation of the sandbox sequence is shown in Figure 6.5.

Figure 6.5: Example of topics content building a “master”-sandbox short before the request rnd-key-23 is

completed

6.3 Transactions management in IL

Inside of IL the key-value pairs are modified by applications. The modification types comprise

removal, inserting and update of key-value pairs. IL notifies subscribed applications about

modifications. There are several use cases for transactions in this context:

1. consistent data distributed among key-value pairs. If the client modifying a set of KVP

crashes during the modification, the resulting data set can be invalid;

2. clients subscribing for change notifications on KVPs receive modifications asynchronously,

typically the smaller KVPs arrive earlier to the client, so it does not know, if the consistent

state is already reached or not (if all modifications made by one transactions already

arrived). For the duration of transfer the biggest modified object (typically 0.1 sec) the

receiver application could have an inconsistent data state and notify the user about

inconsistencies;

3. concurrent “overlapping” modifications – if several clients concurrently modify objects in

Integration Layer, the last writer wins overwriting the changes of the previous one. This is

typically solved by locking objects before writing them. The locking functionality is not

a23c Snapshot: true

key

va

value

a23d xxx

a23e xxx

a23f xxx

a240 x7x

a23c A very big

changeset

key

va

value

/xxx/master/changesets /xxx/master/snapshots

master Persistent:true

undoInhibited: true

key

va

value

/xxx/SBList

rnd-key-23 x7x

key value

/xxx/master/changerequests

rnd-key-23 Accepted: true

key value

/xxx/master/requestNotifications

GA 635900 Page 33 of 74

specified yet in the IL. Some products on the market support locking (Hazelcast, Redis),

some require a dedicated locking service (Opensplice DDS).

The use case 1 and 3 are normally covered by transaction management of an IMDG (e.g. in

Infinispan, Hazelcast, Redis). The use case 2 cannot be covered by Integration Layer implicitly.

Clients requiring “any-time” consistency have to subscribe to the sandbox management.

The current assumption in In2rail is that the sandbox management functionality provides

sufficient support for transactional behaviour in TMS. Therefore the IL-API does not provide

support for transactions. If during the prototype development will come out that real

transactional support is unavoidable, either API will be extended to support transactional

put and get operations or a dedicated service for transactional get operations together with

sandbox-based put interface will be specified.

GA 635900 Page 34 of 74

7 Integration Layer Topics

The following sections describe the different Information Topics used in the Integration

Layer. Topics are a group of data used for the exchange of data between the different

systems involved in the traffic management process, e.g. the Traffic Management System,

the Interlocking, the Energy Management System, etc. Technically Topics are a

representation of a composition relation in the Shift2Rail data model tree, which can be

addressed by a key.

There is a wide range of information that can be distributed via the IL. For In2Rail the scope

is limited to the information of the core areas that are needed to be exchanged from and to

the TMS. Further developments and enhancements of the Topics and data model will be

done in the Shift2Rail Projects X2Rail2 WP6 and IMPACT-2 WP7.

The considered areas are:

 Infrastructure (Railway Topology);

 Timetable;

 Traffic Control and Command (including Process Image);

 Energy;

 External Services (WEB-Interfaces).

More information about the scope of the In2Rail data model, called Shift2Rail CDM, the

composition of it and initial starting points are described in [D8.3].

For identification of the Topics, the following rules served as guidelines [D8.3 Chapter 6.4.4]:

 data objects that normally belong to different organisations should be separated in

different topics, e.g. infrastructure assets, rolling stock, energy system;

 data objects that interact closely should be in the same topic, e.g. signals, switches

and other signalling elements;

 safety related data should be separated from non-vital data. Please note that

potential impacts on assurance levels for applications will have to be assessed and

considered in future Shift2Rail project deliverables (e.g., X2Rail-2, X2Rail-4);

 the three main classes of data persistence spans should be separated, i.e. static data

(e.g. topology data), dynamic data (status information, which changes in real time)

and historic data (e.g. event logs)

7.1 Infrastructure Topics

During the State-of-the Art analysis of existing data standards in the area of Traffic

Management, further described in [D8.3] Chapter 6.2.1, also existing infrastructure models

are taken into account.

GA 635900 Page 35 of 74

The analysis encountered that the RailML standard is a good starting point for the S2R CDM

infrastructure modelling. RailML provides two infrastructure models:

 RailML version 2;

 RailML version3 with RailTopoModel.

RailML version2 is already a stable version and connected to the timetable part of RailML,

but it is not further developed since version 3 with the new RailTopoModel is introduced.

RailML v3 in contrast is still under development by the RailML community und not yet

tested in production.

Both models only contain static elements and have to be enhanced with dynamic data

elements which are missing in the current model since it is used for planning purposes only.

New parts need to be developed in the RailML model to make it usable for the traffic

management process. Since RailML v3 and the RailTopoModel are not available early enough

for a deeper analysis, we decided in WP8 to shift the whole modelling of the Infrastructure

part to the S2R projects X2Rail-2 WP6 and IMPACT-2 WP7.

7.2 Timetable Topics

A timetable represents a planning concept for the train movements on a network. The

process of timetable creation undergoes several steps.

The timetable creation starts with the need of an operator to run their rolling stock on the

network infrastructure. For this the operator sends a request for a train path to the

responsible Infrastructure Manager. After the negotiation phase between the operator and

the IM, where the real train path is generated, the train becomes a resource on the network.

The Infrastructure Manager gets several train path requests from one or different operators.

This planned trains forms the Long Term Planning timetable or seasonal timetable.

This seasonal timetable is published to the Passenger at a specific time of the year. This is

called the published timetable.

During the year the planned timetable and trains are changed several times due to

maintenance on the infrastructure, changes from the operator on the requested train path

and new train requests. This planning phase is called the Short Term Planning and the

updated timetable is saved as an operational timetable, also called the Offline Production

Plan (OffPP).

The Offline Production Plan (OffPP) is send by the planning department on a daily base to

the traffic management department and stored as a reference for the originally planned

timetable. Out of the OffPP the Online Production Plan (OnPP) is generated within a TMS

containing rescheduled train timetables due to actual restrictions and other constraints. The

OnPP is the basis for the operation and it is distributed to appropriate users, like operators,

drivers and PICOPs.

GA 635900 Page 36 of 74

Due to deviations in the running times and other actual state information the OnPP is

rescheduled continuously and consistently followed by distribution to external modules or

recipients as shown in Figure 7.1.

Figure 7.1: Production Plan Loop

Another timetable in the Traffic management system is the forecast timetable. The Forecast

itself is the result of re-calculating the trains of the actual OnPP in order to derive exact train

running based on incoming train positions and apply conflict detection. Some conflicts may

not be resolvable automatically (e.g., due to complexity or missing activation) or simply

because the time horizon for applying conflict resolution has not been reached yet. In these

cases, the forecast calculation usually applies business rules to estimate the time required

for overcoming the respective conflicts.

The actual timetable contains the actual train movements imported from different sources

like the ILS or on-board unit and persisted in the TMS.

Furthermore, a TMS may contain multiple emergency timetables, simulation timetables, etc.

The traffic management system is handling the last steps of the timetable creation process –

from planned to the actual timetable. The TMS staff and services have several requirements

on the data managed as timetables.

7.2.1 Requirements

Before specific terms will be used for definition of train movements the term train will be

used to represent a building block of a timetable in order to formulate the requirements.

GA 635900 Page 37 of 74

Requirement Rational

The timetable shall specify location
and speed of a train in time and space

This is a basic requirement used by:
- operator to monitor and control the traffic;
- Automatic Route Setting service to establish

train routes well in advance before the train
movement;

- Passenger Information System to inform
passengers about arrivals/departures/delays;

- Post-processing system for root cause analysis
for delays and further deviations.

The timetable shall specify
connections to other trains at any
station or track element

Connections for join and split are required by the
staff to know, where to split the train and in which
sequence to join incoming trains.
Passenger and sequence connections are used by
the dispatchers to analyse degrees of freedom in
case of delays of “trigger” trip. In an ideal world
without delays, these kinds of connections are not
required, as they are implicitly modelled by times.
In the timetable they represent “parameters” for a
“decision algorithm”, which decides if the train is
allowed to leave some place (e.g. station).

Transport type (passengers, goods,
empty) for each station.

The purpose of this attributes is similar to
connections – the operator use them to identify
required modifications in case of disturbances.

Dynamic characteristics (length, mass,
acceleration/deceleration profiles)
which can change in any station.

This data allows a simulation algorithm to calculate
technically achievable running times.

Allow various levels of precision, e.g.
to specify only start and end stations
vs. detailed train movement.

There are several use cases:
- Ad-hoc planning requests can be represented as

a “not-completely” planned train run;
- Planning system often delivers a not- completely

planned train runs as they have to be adjusted to
the current state of the network anyway (e.g.
unplanned maintenance, speed restrictions,
delays etc.).

In most cases a detailed specification of train runs
is required.

Provides train position and speed at
distinct points in time with high
precision.

These times can be used by a simulation algorithm
to start run time calculations from the
intermediate points of the train run. Low precision
would produce flipping times in the train run
depending on the simulation starting point.

Compact encoding One use case is a shared forecast timetable
distributed to all involved (several hundred)
clients in very short time (around one second). At
bigger disturbances and timetable modifications
the number of distributed train runs for a medium

GA 635900 Page 38 of 74

Requirement Rational

sized railway network can be several hundred as
well.

Tree structure of the data model A timetable is typically structured as a list of train
runs (or trains). As the Integration Layer
asynchronously distributes timetable
modifications to the subscribed clients, a modified
train (trip) shall contain all the modified elements
in one data structure following the composition
pattern. In this case no additional transactional
behaviour is required, which is not supported by
the planned Integration Layer.

Compact model representation in
memory

The model will be used not only for sending
messages about modifications of some part of the
timetable to/from IL. It shall be possible to
generate client code to reduce complexity (and
the costs) for development of the client
applications. That means to thrifty use of optional
values, as in the client code the values will be
created.

A good metaphor for the timetable represents a time-distance-diagram. As a standard mean

for observing and editing of the train operations the time-distance-diagram represents very

well expectation of the stuff and involved services. Hence the model of the train movement

should provide enough information for “drawing” of a train on the time-distance diagram.

7.2.2 Timetable schema in RailML 2.3

A simplified class diagram of the RailML 2.3 timetable schema is shown in Figure 7.2. In the

following sections several aspects of the specification will analysed for their compatibility

with the requirements in Chapter 7.2.1.

7.2.2.1 Train reference TrainParts

The first observation shows, that the tree structure is dedicated to the planning purpose of a

seasonal timetable: the reuse of TrainParts by several Trains simplifies adaptation as a bulk-

editing of the involved trains with one modification.

Considering requirements from TMS, where the timetable is expected as a list of trains, this

class diagram does not fit well to the Key-Value-based representation in CDM:

 assuming the “Train” concept to be a building block of the Timetable, it does not

contain enough information for description of the train movements and references

to TrainParts;

 TrainParts can be referenced by several Trains, therefore it is not a composition

relation,

 in an Integration Layer where each Topic has a unique data type two topics are

required to model trains: TrainParts and Trains. With missing transactions and

GA 635900 Page 39 of 74

asynchronous delivery implemented in Integration Layer it would be complicated for

the clients to reconstruct the current state of a train.

Therefore the first step for modification of the class diagram would be assumption, that

Train should be a composite of TrainParts.

The next observation is, that TrainParts are “cutting” one Train into pieces with the same

formation – as long as the length and the weight of the train are the same, the TrainPart can

continue. For most of the train movements having const length and weight, the concept of

TrainPart introduces an additional level of complexity without any payload. In case of the

timetable planning process this separation is reasonable to enable reuse of “train-parts” in

several trains. In case of TMS each train is handled completely independent from the others,

and bulk-editing functionality is just a tool to simplify the handling by the human operator.

Therefore the next step of modification would be assignment of Formation-class to OcpTT,

so each modification of the train dynamics can be annotated with a new formation values.

In most cases only the first OcpTT would have one formation-object.

GA 635900 Page 40 of 74

Figure 7.2: Simplified class diagram of Timetable schema in [RailML2.3]

GA 635900 Page 41 of 74

7.2.2.2 Time scope

The next observation is the Scope-attribute of the Time-structure. It annotates the meaning

of the times in the structure and the source of this information. In case of Integration Layer

the Key-value-representations of some entity shall be separated by the source system:

 “actual” arrival time is coming from Train Tracking Service;

 “calculated” arrival is coming from the Forecast Service;

 “published” from Passenger Information System.

If all three sources would modify concurrently one data structure the last “writer” would

overwrite changes made by other systems. Therefore the data shall be structured in a way,

that it is modified by one service only.

This can be achieved if the “meaning” and “source” of the trains is encoded by the Topic

where it is located (see Figure 7.4).

Figure 7.4: Reuse of Train-Data structure for representation of different types of timetables

A disadvantage of information duplication is compensated by a high flexibility and

performance of this approach.

Therefore the modification would be to remove the “Scope”-attribute.

7.2.2.3 Referencing infrastructure

The next concept to be analysed is the referencing of the railway infrastructure. The

absolute coordinates on the railway graph are specified in OcpTT as tuples <TrackReference,

Ocp-Reference>, which refer to the Infrastructure schema, where the element

Track.CrossSection contains OcpReference and its position on the Track. Ocp is a

macroscopic node on the railway infrastructure, typically a station. It is an interesting

approach which allows even abstract specification of the station to be visit, if the Track is

not specified. A disadvantage is that with this approach the timetable (arrival, departures,

connections etc.) can be specified only at station level, but not at signal level. Some

Automatic Route Settings on the market support fine grained planning at signal level, e.g. it

can ensure a train sequence in a station by assigning TrainConnections at entrance signals.

GA 635900 Page 42 of 74

Therefore the required modification would be to allow assignment of timetable information

to signals as well.

7.2.2.4 Splitting TrainPart into station and intra-station sections

The train line in time-distance diagram is splitted into two parts:

 at stations the absolute arrival and departure times are specified in OcpTT;

 between the stations relative running times (after the departure in OcpTT) and

distances are specified in SectionTT-element.

This separation allows two main use cases:

 the times in OcpTT can be shown and edited e. g. a tabular timetable editor (or time

distance diagram);

 a very simple algorithm can automatically adjust running times between stations

using minimal(run)Time and additionalReserve specified in SectionTT. In this case the

SectionTT gives an envelope for constructing the train line between stations in case

of delay or editing of the source departure time or target arrival time.

Figure 7.5: Times in RailML2.3

The running times allow specifying a “smooth” train trajectory with higher precision, than

only at stations. Using additionalReserve attribute it provides an envelope for undisturbed

case. The only use case for this value is a “simplified” forecast algorithm, which calculates

possible arrival times of a train in case of delays by reducing the running time until the

technical minimum. Unfortunately the real arrival times depend not only on train

characteristics, but on the current state of the infrastructure (e.g. temporary speed

restrictions) and the traffic situation (neighbour trains). In the future innovative Traffic

Management System which includes ATO it is assumed that the minimum running time

cannot be used properly by the involved services.

Therefore the modification would be to provide only one planned time-distance line for the

train for controlling purposes.

distance

time

Ocp 1 Ocp 2

OcpTT.departure

OcpTT.arrival

OcpTT.SectionTT.Time

GA 635900 Page 43 of 74

The uncertainty of this line should be modelled by a distribution function, which typically

would have the mean value representing the time-distance line (see Figure 7.6).

Figure 7.6: Representation of uncertainty in time-distance diagram

But even in this case only the operator’s workstation is requiring this information to allow

the operator to identify areas with high uncertainty and create solutions with high

probability.

The next question is, if the separation of time-data between OcpTT and sectionTT required

in TMS. In case of RailML which concentrate on the planning at station level it is a reasonable

approach. As soon as in TMS the times and connections can be associated with signals the

situation changes:

 way between them is mostly unique and;

 the distance is relatively short as well.

It depends on the selection of class hierarchy how to structure the timing points.

7.2.3 Proposed operational timetable representation

According to the CDM-definition process described in D8.3, the Timetable schema from

RailML is used as a starting point for development of the Operational Timetable-part. In the

first step a simplified class diagram was be derived (see Figure 7.7).

Distance

Time

DailyTimetable

- Date: 2018/02/23

Train

OcpTT

- Arrival

- Departure

- trainReverse

- offset, cm

Functional Element

Infrastructure

…

Connection

Join Meet Split

OcpTT

- Arrival

- Departure

- offset, cm

Time-distance points between „stations“

GA 635900 Page 44 of 74

Figure 7.7: First approach for timetable class diagram

In the simplified diagram the separation between contractual conditions (e.g. times for

passenger exchange), operational decisions and just forecasted times between them is

removed.

In TMS the timetable shall represent two main concepts:

 what and when shall be done by involved staff and systems – operational tasks;

 forecast/plan for the future and past train position in time and space.

The class diagram on Figure 7.8 follows this idea: the train is represented by two sequences -

OperationalTasks and TrainPositions. This class diagram has following advantages:

 planned/forecasted time and train positions are located at one place,

 there is a separation of concepts: the operator would modify OperationalTasks and

the TrainPositions will be created by the simulation to a large extent,

 compact representation in the client – trains with few operational tasks (start –

finish) would not require a null-reference in each TrainPosition (like in OcpTT);

 client applications can locate required data quickly: e.g. PIS is interested in

OperationalTasks PassengerExchange and PassengerConnections would find them

from the short list of tasks, without a need to search in all TrainPositions (or OcpTTs),

 the number of optional attributes is small – they can be replaced by default value,

e.g. TrainPosition.offset = 0, TrainPosition.DwellTime=0.

GA 635900 Page 45 of 74

Figure 7.8: Proposed state of the timetable class diagram

The TrainPosition does not have an ID, therefore OperationalTasks would reference them by

its index in the sequence. It is very efficient in most cases – access in O(1) time and no IDs

has to be transferred. As a backside is the necessity to adjust all indexes in case of “re-

routing” causing changes in the number of TrainPosition-Elements in the sequence.

The polymorphism concept is well supported by the Protobuf using oneof-keyword, as well

as by JSON and XML serialisation. In the operational tasks additional references can be used,

e.g. PassengerExchange can reference the Station and the planned platform.

A forecast algorithm could publish only the TrainPosition-part of the train adjusting the

forecast curve each couple of seconds to the new train position reports.

7.2.3.1 Open points in further Shift2Rail projects

The ATO Trackside service would have to identify, which TrainPositions specify the “control

values” for the TMS and which are the estimation of the future train behaviour:

 it is task of ATO TS to identify previous trains and send an interval between previous

and the next train. If the Interval is bigger than some amount e.g. 5 minutes – skip it.

So automatically intervals only on bottlenecks will be sent.

Further open points are representation of the blocking times and overlaps. There are several

possibilities to model them:

 interpolation from available TrainPositions;

 additional fields with beginReserve to endReserve.

The decision depends on typical clients requiring blocking information: if the client requiring

blocking time would have runtime calculation functionality (e.g. a Timetable Editor), it could

DailyTimetable

- Date: e.g. 20180223

Train

TrainPosition

- Arrival

- DwellTime, sec

- offset, cm

- speed, m/h

Functional Element

Infrastructure

…

Op(erational)Task

Join Meet Split Passenger

exchange

Reverse Train

preparation

Crew

GA 635900 Page 46 of 74

interpolate the blocking times itself. A simple client requires explicit pre-calculated blocking

times.

7.3 Traffic Control Topics

This chapter defines the processes of communication, and content of topics used for the

messaging between:

 an external Traffic Control Application for ETCS L2 and L3 located inside a TMS and

the Radio Block Centre (RBC)/Interlocking (IL) in the field and;

 an external Traffic Control Application for Object and Route control located inside a

TMS and the ILS in the field.

The scope of functionalities for which the messaging data are defined, shall be limited to

support core operational procedures. It is well known that there exist a lot of additional

country or client specific operational requirements for additional messaging and or data to

be processed. The messaging between TMS and RBC shall support ETCS L2, L3 and Moving

Block functionality.

This chapter specifies the methodology of the communication from TMS to field

infrastructure via the Integration Layer (IL) applying Subscribe and Publish (S&P) processes.

Subscribers involved in the communication process may have implemented only those

functions necessary to secure the messaging necessary to execute their specific operation

however they shall be able to respond to TMS following the specified Command, Command

Response, Command Reject and Command Acknowledgement procedure.

7.3.1 Functional Architecture based on In Memory Data-Grid technology

The Integration Layer must provide high-availability and scalability by distributing data

across multiple machines.

In-memory technology architectures take advantage of low-latency transaction processing.

This is a consequence of the fact that the price of RAM is dropping significantly and rapidly

and as a result, it has become economical to load the entire operational dataset into

memory with performance improvements of over 1000x faster. In-Memory Compute and

Data Grids provide the core capabilities of an in-memory architecture.

The figure below shows a possible architecture which includes a “CCS Framework Manager”

managing the administration services (start, stop, connect, monitor, deploy and un-deploy,

central logging….) of the Interfaces between Integration Layer and Signaling Field

Infrastructure.

GA 635900 Page 47 of 74

Client/
Application 1

Client/
Application 2

Client/
Application 3

Topic Bus (Integration Layer)

Service 1
e.g. IF to

Interlocking #1

Service 3
e.g. IF to RBC

Service 4
e. g. IF to ATO

Trackside
Infrastructure

Su
b

scrib
es &

P

u
b

lish
es

Su
b

scrib
es

Read
 Data

Su
b

scrib
es

Read
 Data

Service 2
e.g. IF to

Interlocking #2

CCS „ Framework
Manager“

start, stop, connect,

monitor, deploy and

un-deploy, central

logging….)

R
ead

 an
d

w

rite D
ata

Su
b

scrib
es &

P

u
b

lish
es

R
ead

 an
d

w

rite D
ata

Su
b

scrib
es &

P

u
b

lish
es

R
ead

 an
d

w

rite D
ata

Su
b

scrib
es &

P

u
b

lish
es

R
ead

 an
d

w

rite D
ata

Su
b

scrib
es &

P

u
b

lish
es

R
ead

 an
d

w

rite D
ata

Figure 7.9: Architecture based on IMDG Technology

Classic IMDG operation is characterized using key sets where each key belongs to a different

application. The external database component is optional. If present, then IMDGs will

usually automatically read data from the database or write data to it.

Keys K1; K2; K3
Values V1; V2; V3;

K1, V1 to Node 1

K2, V2 to Node 2

K3, V3 to Node 3

In Memory
Data Grid

Write through

Read through

Data
Base

Figure 7.10: Classic IMDG operation with key sets and optional Data Base

7.3.2 Services Management

The generic model to manage the interaction between Integration Layer and Signaling Field

Infrastructure is shown in Figure 4.1. The process is similar for Interlocking, RBC and ATO.

GA 635900 Page 48 of 74

Figure 7.11: Management Process for CCS “Application Framework” for ILS, RBC, ATO

The services/functions needed at the level of the Interfaces to Interlocking, RBC or ATO are

managed by an “CCS Framework Manager for start, stop, connect, monitor, deploy and un-

deploy, central logging Operations (see also In2Rail WP8 [D8.6] and [D8.7]).

7.3.3 Communication Process TMS - Signalling Infrastructure

Figure 7.12: Communication Processes between TMS and Field Infrastructure

7.3.4 Traffic Control related Topics

The following table lists Topics related to Traffic Control according the scope of In2Rail WP8

and which subscriber and publisher may be engaged.

Topic Name Subscriber Publisher

Services registry Actual state of

service

Desired State

(ID, version)

File name,

ID…

Application

Service

GA 635900 Page 49 of 74

Topic Name Subscriber Publisher

Route State
Traffic Management System,
Energy Management System,
Asset Management System

Interlocking System

Route Desired
Energy Management System,
Asset Management System,
Interlocking Systems

Traffic Management System,

Object state

Traffic Management System,
Energy Management System,
Asset Management System

Interlocking System
Asset Management System
(In specific situations a manual over-
write of the status can be done the
Operator)

Object Desired
Interlocking Systems Traffic Management System

Asset Management System

Train State

Passenger Information System,
Energy Management System,
Freight Management System,
Asset Management System,
Traffic Management System

RBC

TSR State
Traffic Management System,
RBC, Asset Management
System

RBC

TSR Desired
Traffic Management System,
RBC, Asset Management
System

Traffic Management System, other
sources which can request a TSR e.g.
Maintenance Staff

Alarm
Traffic Management System,
RBC, Interlocking System,

Traffic Management System, RBC,
Interlocking System

Life Sign
Traffic Management System,
RBC, Interlocking System,

Traffic Management System, RBC,
Interlocking System,

Table 7.1: CCS related Topics and possible Subscribers and Publishers Topic Structure

7.3.5 Life Sign

The “Life Sign” Topic provides the following information which shall be updated periodically.

Source Name Description

TMS,
RBC,
ILS

Client ID

Time Stamp Time of Update/Refresh after specified Time

Site data version Loaded Site data version

 Indication that the Client is in process to change

GA 635900 Page 50 of 74

Source Name Description

site data version

State Client is subscribed and broadcast Data to

 IL(Publish)

 Client is subscribed and broadcast Data to a local
installation (Local)

Authority (System) Authority (incl. indication of ID of
authorized system) or Local (Authority)

 Clients which can request Authority

 Client is in “Authority”- hand over process

Client-Operator Operator ID, Name

 Attributes representing his responsibility profile
e.g. License to manage L3 operation

 Operator phone number

 Flag representing the request to establish contact
with indicated Operator

TMS Systems under Authority List of system which are under Authority (Client Ids)

ILS Objects and Routes
under control

ILS is controlling Objects and Routes in the area of
Control (true/false)

RBC Status of Communication
RBC – OBU

Defines whether the communication RBC-Train for all
Trains in Control is available (true/false)

Trains under control RBC is controlling Trains in the area of Control
(true/false)

Table 7.2: Topic “Life Sign”

7.3.6 Train Control and Train State

7.3.6.1 Train Control Command Topic

The following Train Control Commands shall be possible at minimum:

Name Description

Unconditional Emergency Stop Request to stop a train under emergency stop
conditions

Revoke Emergency Stop Request to revoke an emergency stop

Stop Train Request to stop a train without emergency condition

GA 635900 Page 51 of 74

Continue Trip Request to continue the service

Position Request Request to send the position of a train

Set a new Train Number Request to give a new Train Number to a train e.g. after
splitting a train

Split a Train Request to split a train

Couple a Train Request to couple two trains train

De-register a Train Request to de-register a train e.g. after coupling
manoeuvre

Confirm Configuration Request to confirm the configuration of a train

Plain Text Message Request to send a text message to the train
driver.

Emergency Alert Indication of an emergency alert to the train

7.3.6.2 Train Indication Topic

The following Elements shall be applied to indicate status data of a Train.

Element Name Sub-structure Description

Train Identity
Engine Identity Onboard ETCS identity

Train Number Operational train number

Train Static Data

Train Category Train categories for which the command applies

Train Configuration Description of train consist

Train Length Length of train

Train Max Speed Indicates the train max speed

Loading Gauge

Indication of the maximum height and width for
railway vehicles and their loads to ensure safe
passage through bridges, tunnels and other
structures

Axle Load
The axle load defines the total weight for all
wheels connected to a given axle

Air Tight
Defines whether cars or waggons are air tight to
allow for higher speed in Tunnels

Traction Power
Defines the traction power that can be used by a
train

STM Identity
Identifies which National Class B ATP systems
are available on the train

Train Dynamic
Data

Train Speed Actual speed of the train

Train Position Actual position of the train

Doubt Over
Difference between upper bound of the
confidence interval and the estimated train
position

Doubt Under
Difference between lower bound of the
confidence interval and the estimated train
position.

Train Mode
Identification of Operational Mode of the train
e.g. Train in full Supervision, On Sight…… ATO,
other modes

GA 635900 Page 52 of 74

Element Name Sub-structure Description

ETCS Level Indicates current ETCS level for a train

Radio
Communication

Indicates state of communication between RBC
and the train e. g. normal, terminated

TIMS

Status of Train Integrity
• No train integrity information available
• Train integrity confirmed by integrity

monitoring device

Action Required
Train requests Central System operator action e.
g. approximate position required

Request Route
Indicates whether the train requests route or
not

End of MA
Indicates current end of Movement Authority of
the train

Authorisation

Indicates if train has been given a Movement
Authority e.g. No authority; Movement
Authority; SR Authority; Shunting Authority;
Reversing Authority ……

MA Over RBC Border MA which exceeds border of RBC

Train Transfer State Indicates whether the train is changing RBC area

Train State

Indicates a special status of the train in the RBC
when applicable. Omitted when train is in
normal operational state e. g. Removed meaning
Train has left RBC area and is deleted

Emergency Stop
Indicates whether the train is emergency
stopped or not

SiB Front Offset
Distance from the SiB ahead to the front of the
train.

SiB in Path
Identity of a Signal Board which is included in the
current path for the train

Balise ID Balise ID

Text Message
from TMS to
Train via RBC.

Message Text Message to send to the train driver

Message
Acknowledgement

Indicates whether the Driver/OBU has
acknowledged the text message or not.

7.3.7 TSR State and Desired TSR

7.3.7.1 TSR Management

A TSR is activated and deactivated and therefore all TSRs are stored in a TSR register, both at

the RBC and in the TMS.

The following types of TSRs are part of In2Rail scope:

 Route Map TSR TSR is based on specific conditions of a route or

 route section. A Route Map TSR may not

be de-activated from the Operator by simple

 procedure as it represents a permanent

condition for a section of the track

GA 635900 Page 53 of 74

 Maintenance TSR TSR is established to execute Maintenance work

 Dispatcher TSR Conditional TSR set by the dispatcher

The Operator designs a TSR in a sandbox and execute all mandatory steps and

communication to obtain the agreement and approval for the TSR. The TSR is then send to

the RBC to be stored in the TSR Register. All TSRs send from the TMS to the RBC have the

status “deactivated”. The RBC updates Topic indicating registered TSRs.

All TSRs are broadcasted in the TSR State Topic.

7.3.7.2 TSR State Topic

The TSR State Topics carries the information of all registered and approved TSRs. The state

information is updated from the RBC. The Indication for a TSR shall have the following

information as the minimum.

Name Description

TSR Identity Identity of the TSR

TSR Type TSR Type:
Route Map TSR
Maintenance TSR
Dispatcher TSR

TSR activated/de-activated State of the TSR (True/False)

TSR Speed Requested speed value in a TSR or TSA area

TSR Line Definition of the geographical position where the TSR
starts, geographical position where the TSR ends and
direction how to drive through the start and the end
position of the TSR. (instead of geographical positions
Objects can represent the start and the end of a TSR)

Direction Direction of travel, Nominal/Reverse is defined for all
tracks. This parameter defines in which direction the TSR
is valid

Train Category Variable which defines for which Train categories the TSR
is valid

TSR Status Indicates whether TSR is active or has been deactivated

Deactivation Possible Indicates that a route map defined TSR can be
deactivated from an Operator

Approval Indicates approvals provided for a specific TSR

Comment Text illustrating specific characteristics of the TSR
Table 7.3: Data embedded in TSR State Topic

7.3.7.3 Desired TSR Topic

The Desired TSR Topic carries the information of all TSRs for which state change is requested.

TSRs under negotiation are not visible on this topic (sandbox).

The information is broadcasted from the TMS or other sources which can request a state

change of a TSR.

GA 635900 Page 54 of 74

In addition to the described information to be embedded in the TSR State Topic the Desired

TSR Topic shall allow for the following “Desired States” (Commands) at minimum:

Name Description

Store TSR TMS sends request to RBC to store a TSR into the register

Delete TSR
TMS sends request to RBC to delete a TSR from the
register

Activate TSR (see TSR State) TMS sends request to RBC to activate a TSR

De-activate TSR (see TSR
State)

TMS sends request to RBC to de-activate a TSR

TSR Request
A Client sends a request to TMS/Operator to define a TSR.
The request must contain a minimum set of data see 8.4

Table 7.4: Additional Data (Commands) embedded in Desired TSR Topic

7.3.7.4 TSR Request Indication

The Client sends a request to define a temporary speed restriction. If the indication “Bi-

directional” is set to False then the validity direction of the TSR is the same as defined by a

directed start position, a directed end position and all tracks included in the extent (including

the tracks the start and end position belongs to).

For a TSR request the following table shows the data which are required at minimum.

Name Description

Start Position Position where TSR starts

End Position Position where TSR ends

Track List List of all tracks included

Speed Required Speed limit]

Train Length Delay Delay between deactivation or activation for a long train to
enter or to leave the TSR area

Bi-directional TSR Indicator whether the TSR is for both directions (True/False)

Time Frame Requested period for the TSR

Reason Reason why the TSR is requested

Table 7.5: Additional Data required for TSR Request

7.3.8 Object State and Desired Object

The scope of In2Rail comprises the following Objects:

 Point (Machine);

 Signals;

 Level Crossing;

 Track Circuit;

 Axle Counter.

GA 635900 Page 55 of 74

The data structure for other Objects will be developed under the S2R Program in X2RAIL-2

WP6 and Impact-2 WP7.

For the Objects the Data representing Object State and Desired Object (State) are defined. In

addition, available data representing state of degradation of the Object are introduced.

A concept defining which data can be made available to indicate asset status is under

development of In2Rail WP9 and S2R IP3 projects and the data model and structure will be

updated when results are available. For the time being a first set of data is considered to be

integrated in the data structure.

7.3.8.1 Object State Topic

The Object State Topic carries the information of all Objects.

The state information is updated from the Interlocking. For specific cases a manual over-

write of the status issued from the Operator is possible.

7.3.8.1.1 Point (Machine)

The Indication for a point consist out of signalling related status information and data

representing the current asset status to be used for Traffic forecasting and maintenance

processes and shall have the following information as the minimum:

Name Description

Object ID Identity of the Object

Object Position Geographical position of the Object

Object Type Simple variation to left
Simple variation to right
Triple switch
Crossing without change of direction
Crossing with Double junction
Special version

Max. Speed Maximum allowed speed to pass the object

Max Axle Load Maximum allowed axle load to pass the object

Normal Object is in operation

Unknown Object is out of control e.g. under manual operation

Left Object is in left position

Right Object is in right position

Moving Object is moving

Clamped Left Object is clamped in left position

Clamped Right Object is clamped in right position

Availability prognosis Indication on availability fore-cast for the Object

Maintenance Object is under maintenance
Table 7.6: Indication for Point Machines

7.3.8.1.2 Signals

The indication for Signals shall have minimum the following data:

GA 635900 Page 56 of 74

Name Description

Object Identity Identity of the Object

Proceed Proceed state

Stop Stop state

Speed Indication Indication of Line speed

Availability prognosis Indication on availability fore-cast for the Object

Maintenance Signal is under maintenance (True/False)
Table 7.7: Indication for Signals

7.3.8.1.3 Level Crossing

The indication for Level Crossings shall have minimum the following data.

Name Description

Object Identity Identity of the Object

LX Blocked Level Crossings is Blocked (True/False)
LX Local Level Crossings is in “Local” Operation (True/False)
Communication to LX Communication to LX available (True/False)
LX status unknown Level Crossings Status is Unknown (True/False)
LX status open Barriers are open (True/False)
LX status closed Barriers are closed (True/False)
LX status moving Barriers are moving (True/False)
LX status inhibited Level Crossings Operation is Inhibited (True/False)
Availability prognosis Indication on availability fore-cast for the Object
Maintenance Object is under maintenance (True/False)

Table 7.8: Indication for Level Crossings

7.3.8.1.4 Track Circuits

The indication for Track Circuits shall have minimum the following data.

Name Description

Object Identity Identity of the Object

Unknown Track Circuit is out of control.

Occupied Track Circuit is occupied

Free Track Circuit is free

Availability prognosis Indication on availability fore-cast for the Object

Maintenance Track Circuit is under maintenance (True/False)
Table 7.9: Indication for Track Circuits

7.3.8.1.5 Axle Counter

The indication for Axle Counters shall have minimum the following data.

Name Description

Object Identity Identity of the Object

Unknown Axle Counter is out of control.

Active Axle Counter is active

In-Active Axle Counter is in-active

Availability prognosis Indication on availability fore-cast for the Axle Counter

Maintenance Axle Counter is under maintenance (True/False)
Table 7.10: Indication for Axle Counters

GA 635900 Page 57 of 74

7.3.9 Desired Object Topic

The Desired Object Topic carries the information of all Objects for which state change is

requested.

The information is broadcasted from the TMS or other sources which can request a state

change of an object.

In addition to the described information to be embedded in the Object State Topic the

Desired Object Topic shall allow for the following “Desired States” (Commands) at minimum:

7.3.9.1 Point (Machine)

For Point Control the following “Desired States” (commands) shall be implemented at the

minimum:

Name Description

Left Move to Left

Right Move to Right

Block Point Block the point

Unblock Point Unblock the point

Revoke Trailed Revoke Trailed status of point

Maintenance
requested

Maintenance activities for this object are requested

Table 7.11: Desired States (Commands) for Point Machines

Note: Depending on the type of operation required there may be more components to be
added.
7.3.9.1.1 Signals

For Signals the following “Desired States” (commands) shall be possible at the minimum:

Name Description

Set Proceed state Set Signal to Proceed State

Set Stop state Set Signal to Stop State

Set Speed Indication Set Indication for following Line speed (e. g. TSR)

Maintenance requested Maintenance activities for this object are requested
Table 7.12: Desired States (Commands) for Signal

Note: Depending on the type of operation required there may be more components to be
added.
7.3.9.2 Level Crossing

For Level Crossing the following “Desired States” (commands) shall be possible at the

minimum:

Name Description

Open Open Barriers (Command from TMS)

Close Close barriers (Command from TMS)

Local Switch Level Crossing to Local Operation (Command from TMS)

Central Switch Level Crossing to central /System) operation

Block Block the Level Crossing (Command from TMS)

Unblock Un-Block the Level Crossing (Command from TMS)

GA 635900 Page 58 of 74

Inhibit Command from Operator To ILS: Ignore status from LX object

No-Inhibit Command from Operator to ILS : Consider status from LX object

Maintenance requested Maintenance activities for this Level Crossing are requested
Table 7.13: Desired States (Commands) for Level Crossing

Note: Depending on the type of operation required there may be more components to be
added.
7.3.9.3 Track Circuits

For Track Circuits the following “Desired States” (commands) shall be possible at the

minimum:

Name Description

On Switch Track Circuit to active

Off Switch Track Circuit to in-active

Inhibit Command from Operator To ILS: Ignore status from Track
Circuit

No-Inhibit Command from Operator to ILS: Consider status from Track
Circuit

Maintenance requested Maintenance activities for this Track Circuit are requested
Table 7.14: Indication for Track Circuit

7.3.9.4 Axle Counter

For Axle Counter the following “Desired States” (commands) shall be possible at the minimum:

Name Description

On Switch Axle Counter to active

Off Switch Axle Counter to in-active

Set to Zero Command from Operator To ILS: Set count from Axle Counter
(Over-write Command from TMS after count shows still axle is
in the section but section has been controlled on site by staff
and no Axle is in the section)

Inhibit Command from Operator To ILS: Ignore status from Track
Circuit

No-Inhibit Command from Operator to ILS: Consider status from Track
Circuit

Maintenance requested Maintenance activities for this Track Circuit are requested
Table 7.15: Indication for Axle Counter

7.3.10 Route State and Route Desired

7.3.10.1 Complex “Object” (Route) Topic Definition

The design of Route State Topic and Desired Route Topic requires the specification different

Elements needed to describe the current and desired state. The description of the Elements

of a Route is structured in different individual sections described below.

It is further assumed that the Interlocking or an Automatic Route Setting Device (ARS) is

evaluating the different possible routes for a train service and presenting the result to an

operator for decision or sets the route according implemented principles.

GA 635900 Page 59 of 74

For ATO purposes the granularity of the Element “Path” may be increased to meet the

requirements of “virtual” multiple borders with individual ETA.

A Path representing a route is kept active in the Route State Topic until the train has reached

its final destination.

Movement Authority allowing the train to proceed along the path is given according applied

signaling rules and available track sections belonging to the set path (Route).

7.3.10.1.1 Route Identification

The Route Identification Element is characterized at least by the following attributes:

Name Description

Route ID Identifier for the selected the selected Route

Route Type Normal

 Staff responsible (set sequential by the operator)

 Reverse Route (indicates that path in the reverse
direction will be different to normal route)

Shunting Route (Route set to execute shunting operation
under specific conditions)

Start Object and/or Start
Position of Route

Defines the start of route (see 10.1.2)

End Object and/or End
Position of Route

Defines the end of route(see 10.1.2)

Scheduled ETA at
defined location

ETA for specific positions (stops). This Element can contain
several Position/ETA pairs.

Table 7.16: Route Identification

7.3.10.1.2 Position

A Position is described by its Track Identity.

Name Description

Position Position is defined by Track Identity
Table 7.17: Position

7.3.10.1.3 Directed Position

A Directed Position is determined by a position and a direction in relation to the nominal

direction of the track the position belongs to.

Name Description

Position Position is defined by Track Identity (see 10.2.1)

Direction Direction is defined as directional parameter using nominal
track direction as a reference with the following attributes:

 Unknown,

 Nominal Direction,

 Reverse Direction,

 Both Directions.
Table 7.18: Directed Position

7.3.10.1.4 Object

GA 635900 Page 60 of 74

An Object is described by its Object Identity.

Name Description

Object Position is defined by Object Identity
Table 7.19: Object

7.3.10.1.5 Extent

Extent the sum of all track parts from Start Position to End Position and is defined by a

directed start position, a directed end position and list of all tracks included in the extent

(including the tracks the start and end position belongs to).

Name Description

Start Position = Directed Position (see 9.3.10.1.3)

End Position = Directed Position (see 9.3.10.1.3)

Track List
All tracks between Start and End Position listed with their Track
Identity

Table 7.20: Extent

7.3.10.1.6 Area

An area is a specified territory of the network characterized by extent(s) and borders.

Borders are Directed Positions in the area.

Name Description

Extent = Extent (see 10.2.3)

Border = Directed Position (see 10.2.2)
Table 7.21: Area

7.3.10.1.7 Path

Defines the path (sequence of Objects, Tacks) the train shall follow the time when it shall

arrive and characterizes the current End of MA.

Name Description

Extent = Extent (see 10.2.3)

PathTarget Directed Position (see 10.2.2)

Path Target Time ETA calculated for Path Target

Path Target Type The Path Target Type (position) shall have at least the following
attributes:

 Destination (Final);

 Path Conflict Reached = First occurrence in the path where the
path conflicts with another one;

 Path Conflict Cleared = First occurrence in the path where the
conflicting paths diverge again;

 Route Locking Conflict = First occurrence in the path where
the route locking is / will be stopped.

Table 7.22: Path

7.3.10.1.8 Location

For specific operations a “Location” can be defined and managed. The Route state topic

includes an Element to describe a location and its state. In the Desire Route Topic, the

commands to switch state of a location are listed.

GA 635900 Page 61 of 74

Name Description

Location (Object)Identity Identity of the Location (Object)

Location Operation Identifier which Operation is executed at the location

Priority of the Operation
executed

Identifier for Piority of the executed Operation

Blocked Location is blocked for Train Operation (True/False)

Blocked for Destination Location is blocked for Train Operation in direction of a
specific destination (True/False)

Under Control of ILS Location is controlled from an Interlocking (True/False)

Maintenance Status The following attributes shall be available at the
minimum:

 Location is in Operation;

 Location is requested for Maintenance Operation;

 Location is in Maintenance process.
Table 7.23: Location

7.3.10.2 Operation Variables

The Topic “Route Desired” includes the operational attributes (commands) to operate a

section. The commands listed in the table below represent a minimum which may be

increased depending on specific IM requirements.

7.3.10.2.1 Variables (Commands) for Section Operation

To operate a section a set of variables (commands) is needed.

Name Description

Track Section ID of Track Section (Object ID)

Set Block Command to et Section to Blocked state

Release Block Command to release Section Block

Set Restriction Command to set a predefined Section Restriction

Remove Restriction Command to release a Section Restriction

Reset Axle Counter Command to reset Aixle Counter of the section

Reset Track Circuit Command to reset Track Circuits of the section
Table 7.24: Variables for section operation

Note: Depending on the type of operation required there may be more components to be
added to a border specification.

7.3.10.2.2 Variables (Commands) for Route Management

Name Description

Route (Object) ID ID of Route

Set Route Command to set a conventional train route

Release Route Command to release a conventional train route

Set Cooperative Train Route Command to set a ETCS train route

Release Cooperative Route Command to release an ETCS train route

Set Shunting Route Command to set a shunting route

GA 635900 Page 62 of 74

Release Shunting Route Command to release a shunting route
Table 7.25: Variables for Route Management

7.3.10.2.3 Area Operation

In the context of this document an Area is an artificially created “region” for the execution of

specific operations e.g. Joining Area, Splitting Area…. or just to bundle several individual

activities (commands) into one process. Areas are predefined and are activated or

deactivated. Areas are registered in the TMS and the Interlocking.

Name Description

Activate Area Command to activate an Area

De-activate Area Command to de-activate an Area

Delete Area Command to delete an Area from the register
Table 7.26: Area Operation

7.3.11 Alarm Topic

Alarms are generated from ILS and RBC and shall have as minimum following parameter:

Name Description

Alarm Source ID ID the source of an alarm sent from RBC or ILS

Alarm Acknowledged
Specifies the status of an alarm sent from RBC or ILS
(True/False)

Alarm Group
This variable identifies a group of alarm codes. The values are
platform dependent.

Alarm Code
Specifies the alarm code within an alarm group. The values are
site and system dependent.

Alarm Parameters
Defines the Parameter and the values of the parameter of an
Alarm

Alarm Acknowledged by System/Operator´s ID who has acknowledged the Alarm
Table 7.27: Data on Alarm Topic

7.4 Energy Management Topics

This chapter gives a brief introduction into the Topics needed for Energy Management. For

more detailed description please see [D10.4 – TMS/MMS Interface Specification]. The

following Energy Management information shall be possible to communicate at minimum:

Name Description

Vehicle power limits
and expected power
usage

Describing the impact of temporary limitations of power
availability for electrical motor units. TMS Topic Online
Production Plan with its data structure timetable, train parts
and related schedule sections.

ETS Component Status Providing status of Electric Traction power System components
(e.g., power switches, catenary sections)

Temporary resource
restriction “Feeding
section is not
energized”

Temporary resource restriction “Feeding section is not
energized”

Component disruption Disruption information “Outage of a major component <x> of

GA 635900 Page 63 of 74

Name Description

information substation <y>”

Component status
change information

Changed status information of components “status of
component <x> is (secure on, secure off, secure in-between,
unknown)”

Table 7.28: Information on Energy Topic

7.4.1 Other Topics involved

Electric Traction power Systems, especially the Multi Train Simulator modules require the

following topics:

TMS:

 Network Infrastructure (especially Functional Assets);

 Vehicle Characteristics;

 Temporary Access Restriction;

 Online Production Plan;

 Forecast.

Maintenance Management:

 Operated Maintenance.

7.5 External Services (WEB-IF) Topics

In the following, the IL-Topics and involved data structures are described for a selection of

interfaces communicating to external services or applications, typically using HTTP based

protocols.

7.5.1 Weather forecast/report services

Today, there are a couple of open data initiatives around Web based supply of updated

weather information as, e.g., opendata.dwd.de (provided by Deutscher Wetterdienst,

Germany) or https://www.yr.no/ (provided by Norwegian Meteorological Institute together

with the Norwegian Broadcasting Corporation).

TMS Interfaces publishing relevant IL topics from these services have to support the

different protocols according to the terms and conditions for accessing them as being

available from the respective Web sites.

Weather reports about the current status and forecast of weather as related to geography

or network infrastructure in the IL is available through the WeatherCondition data structure

which is referencing the respective locations and time information.

Note that based on this information, TMS business logic generates and updates specific

types of Temporary Access Restrictions impacting forecast calculation and conflict detection

of the TMS. Examples are temporary speed restrictions or line/bridge closures due to critical

GA 635900 Page 64 of 74

wind speeds or snowfall. Other examples are reduced traction force or wheel/track adhesion

due to solar irradiation, temperature, humidity.

7.5.1.1 Data Structure WeatherCondition

According to the Assets data structure of the Network Infrastructure, the Location Reference

for weather condition information can be modelled either as AreaLocation, LinearLocation or

SpotLocation depending on the characteristics of the measured information. Usually, the

available open data services provide grid based information with certain resolution i.e.,

distance between grid points. However, the other location types might be of relevance for

future data services or not yet assessed ones. Besides the location information, also the time

is of interest, since one can have reported and forecasted information. Consequentially, the

time as provided with the external weather service is used by the interface in order to feed

the Time Reference information. This data structure carries different parameters included in

sub-structures. It is a container and shall contain as a minimum following parameter:

Name Description

WeatherConditionWind Condition for wind (See 9.5.1.1.1)

WeatherConditionHumidity Condition for humidity (See 9.5.1.1.2)

WeatherConditionTemperature Condition for Temperature (See 9.5.1.1.3)

WeatherConditionAux Condition for auxiliary (See 9.5.1.1.4)
Table 7.29: Weather Condition

The sub-structures of WeatherCondition and the information they carry are described in

more detail in the next sections.

7.5.1.1.1 Data Structure WeatherConditionWind

Following wind related parameters shall be communicated at minimum:

Name Description

Wind Direction The direction of the wind

Max Wind Speed Decimal (m/s)

Meridional wind speed Decimal (m/s)

Zonal wind speed Decimal (m/s)
Table 7.30: Information on Weather Condition Wind

7.5.1.1.2 Data Structure WeatherConditionHumidity

Following humidity related parameters shall be communicated at minimum:

Name Description

Relative humidity Relative humidity 2m above ground

Surface specific humidity e.g., steel
Table 7.31: Information on Weather Condition Humidity

7.5.1.1.3 Data Structure WeatherConditionTemperature

Following temperature related parameters shall be communicated at minimum:

Name Description

Air temperature Decimal (degree centigrade)

GA 635900 Page 65 of 74

Ground temperature Decimal (degree centigrade)
Table 7.32: Information on Weather Condition Temperature

7.5.1.1.4 Data Structure WeatherConditionAux

Following Auxiliary Weather Condition related parameters shall be communicated at

minimum:

Name Description

Precipitation Precipitation in mm Rain

Soil moisture Decimal (percent)

Snow depth Decimal (m)

Snow density Decimal (g/cm³)

Solar irradiation Decimal (W/m²)
Table 7.33: Information on Weather Condition Aux

7.5.2 Dynamic Demand services

The currently planned assignment of rolling stock units and staff/crew members to train runs

is communicated using the Offline and Online Timetable topics. In order to enable

communication of options regarding these assignments in the view of RU’s resource

planning systems, additional data structures have to be considered.

7.5.2.1 Data Structure DDAlternativeResourceLinkStaff

With this data structure, alternative resource links for staff as assigned to train runs within

the production plan are communicated. The links are assigned at the locations (operational

control points) where the respective on- or off-boarding operations are performed, i.e., at

start, destination and crew/staff exchange stations or stop points. For the Alternative

Resource Link Staff the following parameters should be communicated as a minimum:

Name Description

Train ID
The links are assigned to a train run using the identification
of the train TrainID and the related operational control
point TrainOCPRef (see next line)

TrainOCPRef
Related operational control point (see above Train ID
description)

StaffName Name of the staff for identifying the staff resource

StaffPhone Phone number of the staff for identifying the staff resource

StaffType Type of the staff for identifying the staff resource

ResourceAvailabilityTimeFrom
Constraints on earliest and latest time of availability of a
staff resource at the location

ResourceAvailabilityTimeTo
Constraints on earliest and latest time of availability of a
staff resource at the location

MinHandlingTime
For addressing timing needs, minimum and maximum
handling times are used

MaxHandlingTime For addressing timing needs, minimum and maximum
handling times are used

LinkType The data element LinkType is of Boolean data type
indicating on- or off-boarding

Table 7.34: Information on Alternative Resources Link Staff

GA 635900 Page 66 of 74

7.5.2.2 Data Structure DDAlternativeResourceLinkRollingStock

With this data structure, alternative resource links for rolling stock as assigned to train runs

within the production plan are communicated. The links are assigned at the locations

(operational control points) where the respective attaching or detaching operations are

performed, i.e., at start, destination and material exchange stations or stop points. For the

Alternative Resource Link Rolling Stock the following parameters should be communicated

as a minimum:

Name Description

Train ID
The links are assigned to a train run using the identification
of the train TrainID and the related operational control
point TrainOCPRef (see next line)

TrainOCPRef
Related operational control point (see above Train ID
description)

VehicleRef
For identifying the rolling stock resource and using vehicle
details, the reference link to the vehicle information on the
IL is required

ResourceAvailabilityTimeFrom
Constraints on earliest and latest time of availability of a
rolling stock resource at the location

ResourceAvailabilityTimeTo
Constraints on earliest and latest time of availability of a
rolling stock resource at the location

MinHandlingTime
For addressing timing needs, minimum and maximum
handling times are used

MaxHandlingTime
For addressing timing needs, minimum and maximum
handling times are used

LinkType
The data element LinkType is of Boolean data type
indicating attachment or detachment of rolling stock

Table 7.35: Information on Alternative Resources Link Rolling Stock

7.5.2.3 Data Structure DDAlternativeTT

This data structure is used for communication of alternative RU/passenger requirements for

trains regarding timetable locations and related times as currently negotiated and reflected

by the Offline and Online Timetable structure of the IL. For the Alternative Timetable the

following parameters should be communicated as a minimum:

Name Description

Train ID
For identification of the train and related operational control point,
data elements TrainID for and TrainOCPRef are available (see next
line also)

TrainOCPRef Related operational control point (see above Train ID description)

AltEarliestArrivalTime

In order to transfer alternative earliest/latest times of arrival at a
departing/destination station AltEarliestArrivalTime and
AltLatestArrivalTime are used in contrast to the currently
negotiated arrival times. Please note that in case of optional
changes in timing at departure station e.g., regarding loading
processes before departure, there can be alternative earliest/latest
arrival times (i.e., time making the train available at unloading

GA 635900 Page 67 of 74

Name Description

track) for the train communicated with this structure.

AltLatestArrivalTime See description AltEarliestArrivalTime

AltStopInfo
Used for communicating on-demand stop or cancellation of stop
e.g., if there is no real interest of stopping anymore

AltOCPRef

An alternative departure, destination or intermediate handling
location for freight and passenger can be communicated by making
use of the AltOCPRef element. At the same time, earliest/latest
times of arrival at that location may be used with
AltEarliestArrivalTime and AltLatestArrivalTime as described above.
Table 7.36: Information on Alternative Timetable

7.5.2.4 Data Structure DDAvailabilityConstraintTrack

Availability constraints of track resources are communicated to RUs based on a topic

TemporaryAccessRestriction. From this structure, maximum speed (0=blocking), maximum

total load, maximum axle load, maximum gauge, energy and signalling system restrictions

can be retrieved and forwarded to RUs. It is used primarily, to let RUs consider appropriate

options for alternatives in geography and timing of train services as being communicated by

previous data structures.

7.5.2.5 Data Structure DDAvailabilityConstraintRollingStock

In order to let RUs transfer information about availability constraints of rolling stock

resources to IM, different data elements are available:

Name Description

ReducedMaxSpeed
Indicates a reduced maximum speed for the vehicle which has
been observed either by traction engine drivers or by available
on-board systems

ReducedMaxTractionForce
Represents a temporarily reduced maximum traction force of
a vehicle

RestrictionSigSystem
Enumeration type referring to situations where, due to some
OBU component failure, specific type(s) of signalling systems
can temporarily not be supported

RestrictionTCSystem
Enumeration type related to temporary train control system
restrictions as indicated by the OBU of a vehicle

RestrictionBrakeSystem
Enumeration type related to temporary braking system
restrictions as observed by staff or indicated by OBU
equipment of a vehicle

VehicleRef
For identifying the vehicle itself, the Vehicle ID VehicleRef is
used which also acts as reference link to the vehicle base
information on the IL

Table 7.37: Information on Availability Constraint Rolling Stock

All values above act as an overlay to the vehicle’s technical base data as being available from

the IL as well. The value “-1” is used for removing the overlay to revert back to the value of

technical base data, i.e., re-setting to the technical default value. “0” is used to indicate that

there is no temporary change.

GA 635900 Page 68 of 74

7.5.2.6 Data Structure DDPassengerCount

Today’s trip or journey planning mobile applications (Apps) are providing information about

the individual booking details and may also supply TMS with changes in travel priorities in

the future e.g., if train faces significant delay. Also central ticket booking or seat reservation

systems are technically able to supply details about how many people are expected to be on

which train heading for what destination. Knowing this, future TMS will be able to consider

“costs” of alternative travel plans for passengers sitting in a train within disturbed situations

in order to support object functions of optimizers or re-scheduling modules.

For communication of numbers of passengers within the train as per destination station, we

have to be aware that these figures may change at any stop for passenger (dis-) embarking.

As a consequence, this data structure contains a number of sub-structures of type

DDPassengerCountStation reflecting the passenger numbers for each stop. Please be aware

that passengers tend to apply individual decision making in order to re-plan their journey

dynamically so that these figures might be sometimes representing estimations rather than

water proof figures. The following parameters are communicated for Passenger Count:

Name Description

DDPassengerCountStation Reflecting the passenger numbers for each stop

Train ID For identification of the train
Table 7.38: Information for Passenger Count

7.5.2.7 Data Structure DDPassengerCountStation

The following parameters are communicated for Passenger Count Station:

Name Description

TrainOCPRef Referring to a commercial stop for passenger (dis-) embarking

DDPassengerCountStation
Dest

Number of sub-structures of type
DDPassengerCountStationDest where passenger numbers
(per destination station) sitting in the trains between this
commercial stop and the next can be found

Table 7.39: Information for Passenger Count Station

7.5.2.8 Data Structure DDPassengerCountStationDest

The following parameters are communicated for Passenger Count Station Destination:

Name Description

OCPRef For identifying the destination station

PassengerCountFirstClass
Representing the number of passengers heading for this
destination which itself is not necessarily part of the
scheduled train run

PassengerCountSecondClass
Representing the number of passengers heading for this
destination which itself is not necessarily part of the
scheduled train run

Table 7.40: Information on Passenger Count Station Destination

GA 635900 Page 69 of 74

7.5.3 Passenger information services

For information about numbers of passengers within a train with their assigned destination,

please refer to the respective Dynamic Demand data structures.

The following parameters are communicated for Passenger information services as a

minimum:

Name Description

PassengerCountReservation Described in section 9.5.3.1

PassengerCountDetected Described in section 9.5.3.4

PassengerTimetableUpdate Described in section 9.5.3.7

PassengerTrainPositions
Data structure should look like “forecast” data
structure

PassengerTransferConnectionStatus
Status of passenger transfer connection, e.g. status
“at risk” and “broken”

Table 7.41: Information on Passenger information services

7.5.3.1 Data Structure PassengerCountReservation

The number of passengers who reserved seats in specific coaches within 1st or 2nd class are

available from this data structure. Please note that we decided to show the passenger

numbers against their planned destinations within the Dynamic Demand data structures

described in the previous sections. This structure represents the absolute figures given by

seat reservation systems as per rolling stock unit (seat reservation systems). It contains one

or more sub-structures of type PassengerCountReservationStation where the effective

number of seat reservations can be found.

7.5.3.2 Data Structure PassengerCountReservationStation

This sub-structure contains a TrainOCPRef referring to a commercial stop for passenger (dis-)

embarking and one or more sub-structures of type PassengerCountReservationStationUnit.

7.5.3.3 Data Structure PassengerCountReservationStationUnit

This sub-structure contains a VehicleRef referring to the rolling stock unit and data elements

PassengerCountReservationFirstClass and PassengerCountReservationSecondClass

representing the number of seat reservations within the two classes.

7.5.3.4 Data Structure PassengerCountDetected

Numbers of passengers within a rolling stock unit can also be detected or estimated by

technical components as e.g., scales. Also GPS based localization capability for mobile

phones may be available as a future source of similar information. This data structure holds

the actual passenger numbers as detected live during train operation.

7.5.3.5 Data Structure PassengerCountDetectedStation

This sub-structure contains a TrainOCPRef referring to a commercial stop for passenger (dis-)

embarking and one or more sub-structures of type PassengerCountDetectedStationUnit.

GA 635900 Page 70 of 74

7.5.3.6 Data Structure PassengerCountDetectedUnitStation

This sub-structure contains a VehicleRef referring to the rolling stock unit and data element

PassengerCountDetected representing the number of detected passengers within it.

7.5.3.7 Data Structure PassengerTimetableUpdate

This data structure is used for sending updates on passenger timetables as published by TMS

to the respective Passenger Information Systems of the RUs or other parties.

It is the result of applying an appropriate filter for passenger services to the Offline or Online

Timetable data structure of the IL.

GA 635900 Page 71 of 74

8 Conclusions

Even if the Traffic Management System, the Signalling Systems, Energy Management and

many other internal systems are in the hand of one Infrastructure Manager the systems are

not fully integrated. Especially in the area of optimising the processes and used functions the

systems does not deliver and exchange the necessary information today. The same is valid

for external systems. Often they are not even connected to the Traffic Management System.

So Passenger information or information about freight demands e.g. cannot be considered

during runtime calculation or conflict resolution.

Another problem is the Interfaces that are always developed new for every new project and

systems/software that are connected. So far no common standard communication model is

developed in the area of operation and traffic management. For the planning process the

RailML Version 2 represents a well-known (de-facto) standard for serialisation of timetables

and infrastructures. Thus it makes sense to take this model as an initial point for the

developments of the In2Rail-specific Canonical Data Model for Traffic Management

purposes. To communicate this standard data model a standard communication platform is

introduced, called Integration Layer to connect internal and external systems for the traffic

management.

The aim of this report has been to describe the data structure and data that is exchanged for

internal Interfaces of the Integration Layer as well as External Web Services and Dynamic

Demand IFs.

This document describes the Information Topics interchanged by the Integration Layer for

the different traffic management processes.

The scope of the In2Rail data modelling is limited to the data needed for the main processes

of Traffic Management:

 Infrastructure;

 Timetable;

 Train Control;

 Energy;

 External Services.

This specification is the first version and contains only the information topics needed for the

core processes of Traffic Management. With the feedback of WP7 it will be enhanced and

further developed during several Shift2Rail projects before getting a real standard. After

that, it will be used as a basis for development of new standardised communication

platforms and interfaces. It is expected that the IL will be extensively used to reduce

development efforts and provide integrated systems.

GA 635900 Page 72 of 74

9 Glossary

Term Definition

CDM
The Canonical Data Model as defined in [CDM] is representing
the data model definition as used within the Integration Layer.

Forecast
Estimate information in the future, deviations from the plan
estimated.

Integration Layer Communication link between the different Business Services.

Node

Typically, it is a computer with some operating system running or
a virtual machine where bundles/containers are deployed. With
the existence of cloud based Container-Services, the term Node
can mean a managed cluster as well. In this sense the Node is
one unit of the execution platform.

Nowcast Instant information in the present.

Publisher
Entity that publics messages to be consumed by one or more
subscribers. Actor of a business process that publishes Topics (i.e.
make available and updates).

Subscriber
Entity that consumes messages sent by the Publisher. Actor of a
business process that receives updates about one or more
different topics it has subscribed.

Topic
Information specific to a business process. A topic is made up of a
structured collection of operational data.

xxxDesired Topic
Topics representing a “Fore-cast” or a requested state
(Command) are characterized by the word “Desired” in the Topic
name.

xxxState Topic
Topics representing the actual state show the expression “State”
in the Topic Name.

Indication

An “Indication” is a set of data representing static, dynamic and
process data embedded in a topic for objects, routes, sections or
trains. These data are updated from a source (publisher) which
controls or monitors the assets when changes of state occur, an
update is required from the operator/TMS or the client indicates
an executed action after a command or command
acknowledgement. A self-closing tag or an empty tag in an
“Indication” means that the status information on this attribute is
removed.

Authority
The Traffic Management System has Authority on RBCs and
Interlockings.

Control
The RBC controls trains and an Interlocking has control over
Routes, Sections and Objects.

Command
In the context of Integration Layer, commands represent a
“desired” state, which is published in a xxxDesired topic and
continues to be active, until the “desired” state is achieved.

Simple Command
In case of a simple command procedure, the issuer updates the
appropriate xxxDesired topic. The command receiver executes

GA 635900 Page 73 of 74

Term Definition

the command and updates the xxxState topic when the action is
executed. In case the Command is rejected, an Alarm is triggered.

Acknowledged
Command

Acknowledged commands have an extra acceptance step where
the Client confirms the that it is possible to execute the
command updating the xxxDesired topic. Then the issuer updates
the appropriate section of the topic with a Command
Acknowledgement to request the start of the execution of the
command. In case the Command is rejected, an Alarm is
triggered.

GA 635900 Page 74 of 74

10 References

ERA – ERTMS/ETCS Class 1 System Requirement Specification – July 2017, SUBSET-026
Version 3.6.0
[CDM] Annex to D8.3 and D8.6. Description of the Canonical Data Model,

In2Rail, 2017
[D8.3] Description of Integration layer and Constituents, In2Rail, 2017
[D8.6] Description of the Generic Application Framework and its constituents,

In2Rail, 2017
[D8.7] Interface Control Document ICD for Application specific Interfaces,

In2Rail, 2017
[D10.4] TMS/MMS Intercace Specification, In2Rail, 2017
[Protobuf 2017] https://developers.google.com/protocol-buffers/
[Hazelcast] http://docs.hazelcast.org/docs/3.8.1/manual/html-single
[Redis] https://redis.io/documentation
[Shift2Rail] https://shift2rail.org/
[OMG DDS] https://www.omg.org/spec/DDS/About-DDS/
[BookKeeper2017] http://bookkeeper.apache.org
[Zookeeper2017] http://zookeeper.apache.org/
[Mesos2017] http://mesos.apache.org

https://developers.google.com/protocol-buffers/
http://docs.hazelcast.org/docs/3.8.1/manual/html-single
https://redis.io/documentation
https://shift2rail.org/
https://www.omg.org/spec/DDS/About-DDS/

