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Abstract. State-of-the-art train delay prediction systems do not exploit histori-
cal train movements data collected by the railway information systems, but they
rely on static rules built by expert of the railway infrastructure based on classi-
cal univariate statistic. The purpose of this paper is to build a data-driven train
delay prediction system for large-scale railway networks which exploits the most
recent Big Data technologies and learning algorithms. In particular, we propose
a fast learning algorithm for predicting train delays based on the Extreme Learn-
ing Machine that fully exploits the recent in-memory large-scale data processing
technologies. Our system is able to rapidly extract nontrivial information from
the large amount of data available in order to make accurate predictions about
different future states of the railway network. Results on real world data coming
from the Italian railway network show that our proposal is able to improve the
current state-of-the-art train delay prediction systems.

Keywords: Condition–Based Maintenance, Naval Propulsion Plant, Machine Learn-
ing, Publicly Distributed Dataset

1 Introduction
Big Data Analytics is one of the current trending research interests in the context of
railway transportation systems. Indeed, many aspects of the railway world can greatly
benefit from new technologies and methodologies able to collect, store, process, ana-
lyze and visualize large amounts of data [34, 37], e.g. condition based maintenance of
railway assets [9, 25], alarm detection with wireless sensor networks [20], passenger in-
formation systems [23], risk analysis [8], and the like. In particular, this paper focuses
on predicting train delays in order to improve traffic management and dispatching using
Big Data Analytics, scaling to large railway networks.

?? This research has been supported by the European Union through the projects Capacity4Rail
(European Union’s Seventh Framework Programme for research, technological development
and demonstration under grant agreement 605650) and In2Rail (European Union’s Horizon
2020 research and innovation programme under grant agreement 635900).
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Although trains should respect a fixed schedule called “nominal timetable”, de-
lays occur daily because of accidents, repair works, extreme weather conditions, etc.,
and affect negatively railway operations, causing service disruptions and losses in the
worst cases. Rail Traffic Management Systems (TMSs) have been developed to sup-
port managing complex rail services and networks and to increase operations efficiency
by allowing train dispatching through remote control of signaling systems. By provid-
ing accurate train delay predictions to TMSs, it can be possible to greatly improve
traffic management and dispatching in terms of passenger information systems and
perceived reliability [24], freight tracking systems for improved customers decision-
making, timetable planning [5] by detecting recurrent delays, and delay management
(rescheduling) [6].

Due to its key role, TMS stores the information about every “train movement”, i.e.
every train arrival and departure timestamp and delays at “checkpoints” monitored by
signaling systems (e.g. a station, a switch, etc.). Datasets composed of train movements
records have been used as fundamental data sources for every work addressing the prob-
lem of train delays predictions. For instance, Milinkovic et al. [22] developed a Fuzzy
Petri Net (FPN) model to estimate train delays based both on expert knowledge and
on historical train movements data. Berger et al. [2] presented a stochastic model for
delay propagation and forecasts based on directed acyclic graphs. Goverde, Keckman
et al. [11, 12, 17, 18] developed an intensive research in the context of delay prediction
and propagation by using process mining techniques based on innovative timed event
graphs, on historical train movements data, and on expert knowledge about railway in-
frastructure. However, their models are based on classical univariate statistics, while
our solution integrates multivariate statistical concepts that allow our models to be ex-
tended in the future by including other kind of data (e.g. weather forecasts, passenger
flows, etc.). Moreover, these models are not especially developed for Big Data tech-
nologies, possibly limitating their adoption for large scale networks. Last but not least,
S. Pongnumkul et al. [29] worked on data-driven models for train delays predictions,
treating the problem as a time series forecast problem. The described system investi-
gates the application of ARIMA and k-NN models over limited train data, making it
unsuitable for Big Data.

For these reasons, this paper investigates the problem of predicting train delays for
large scale railway networks by treating it as a time series forecast problem where ev-
ery train movement represents an event in time, and by exploiting Big Data Analytics
methodologies. Delay profiles for each train are used to build a set of data-driven models
that, working together, make possible to perform a regression analysis on the past delay
profiles and consequently to predict the future ones. The data-driven models exploit a
well-know Machine Learning algorithm, i.e. the Extreme Learning Machines (ELMs),
which has been adapted to exploit typical Big Data parallel architectures. Moreover,
the data have been analyzed by using state-of-art Big Data technologies, i.e. Apache
Spark on Apache Hadoop, so that it can be used for large scale railway networks. The
described approach and the prediction system performance have been validated based
on the real historical data provided by Rete Ferroviaria Italiana (RFI), the Italian In-
frastructure Manager (IM) that controls all the traffic of the Italian railway network.
For this purpose, a set of novel Key Performance Indicators (KPIs) agreed with RFI
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has been designed and used. Several months of records from the entire Italian railway
network have been exploited to show that the new proposed methodology outperforms
the current technique used by RFI to predict train delays in terms of overall accuracy.

2 Train Delay Prediction Problem: the Italian Case

Fig. 1: A railway network depicted as a graph, in-
cluding a train itinerary from checkpoint M to Q

A railway network can be con-
sidered as a graph where nodes
represent a series of checkpoints
connected one to each other.
Any train that runs over the net-
work follows an itinerary de-
fined by a series of n

c

check-
points C = {C1,C2, · · · ,Cn

c

},
which is characterized by a sta-
tion of origin, a station of des-
tination, some stops and some
transits (see Figure 1). For any
checkpoint C, the train should
arrive at time t

C

A

e and should depart at time t

C

D

, defined in the nominal timetable (with a
precision of 30 seconds or 1 minute). The actual arrival and departure times of the train
are defined as t̂

C

A

and t̂

C

D

. The differences (t̂C

A

� t

C

A

) and (t̂C

D

� t

C

D

) are defined as arrival
and departure delays respectively, and a train is considered a “delayed train” if its delay
is greater than 30 seconds or 1 minute. A dwell time is defined as the difference between
the departure time and the arrival time for a fixed checkpoint (t̂C

D

� t̂

C

A

), while a running
time is defined as the amount of time needed to depart from the first of two subsequent
checkpoints and to arrive to the second one (t̂C+1

A

� t̂

C

D

).

Fig. 2: Data for the train delay forecasting models
for the network of Figure 1

In order to tackle the prob-
lem of train delays predic-
tions, we propose the follow-
ing solution. Taking into ac-
count the itinerary of a train,
for each checkpoint C

i

where
i 2 {0,1, · · · ,n

c

}, we want to be
able to predict the train delays
for each subsequent checkpoint
C

j

with j 2 {i+1, · · · ,n
c

}. Note
that C0 represents the train be-
fore its departure from the ori-
gin station. In this solution, the
train delays predictions problem
is treated as a time series fore-
cast problem, where a set of predictive models perform a regression analysis over the
delay profiles for each train, for each checkpoint C

i

of the itineraries of these trains,
and for each subsequent checkpoint C

j

with j 2 {i+ 1, · · · ,n
c

}. The models are built
by exploiting a slightly modified version of the popular ELM algorithm. The historical
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records about arrivals and departures for each train at each checkpoint, as well as addi-
tional derived information such as dwell times and running times, are used as the input
of the algorithm. For example, Figure 2 shows the data needed to build forecasting mod-
els based on the railway network depicted in Figure 1. Basically, based on the state of
the railway network between time (t�d�) and time t, we want to predict the network
state from time t to (t +d+) and this is nothing but a classical regression problem [28].
To sum up, for each train characterized by a specific itinerary of n

c

checkpoints, we need
to build n

c

models for C0, (n
c

�1) for C1, and so on. Consequently, the total number of
models to be built for each train can be calculated as n

c

+(n
c

�1)+ · · ·+1 = n

c

(n
c

�1)/2.
These models work together in order to make possible to estimate the delays of a par-
ticular train during its entire itinerary.

Considering the case of the Italian railway network, RFI controls every day approx-
imately 10 thousand trains traveling along the national railway network. Every train is
characterized by an itinerary composed of approximately 12 checkpoints, which means
that the number of train movements is greater than or equal to 120 thousands per day.
This results in roughly one message per second and more than 10 GB of messages
per day to be stored. Note that every time that we retrieve a complete set of messages
describing the entire planned itinerary of a particular train for one day, the predictive
models associated with that train must be retrained. Since for each train we need to build
at least n

c

(n
c

�1)/2⇡ 60 models, the number of models that has to be retrained every day
in the Italian case is greater than or equal to 600 thousands.

3 Delay Prediction System for Large-Scale Railway Networks
Let us consider a regression problem [35] where X 2 Rd is the input space and Y 2
R the output one. Moreover, let us consider a set of examples of the mapping D

n

:
{z1, · · · ,zn

} of cardinality n, where z

i2{1,··· ,n} = (x
i

,y
i

) with x 2 X and y 2 Y . A
learning algorithm AH , characterized by a set of hyperparameters H that must be
tuned, maps D

n

into a function f : A(D
n

,H ) from X to Y . The accuracy of a func-
tion f : A(D

n

,H ) in representing the hidden relationship between input and output
space is measured with reference to a loss function `( f ,z) : FH ⇥ (X ⇥Y )! R.
The quantity which we are interested in is the generalization error [1, 35], namely the
error that a model will perform on new data generated by µ and previously unseen
L( f ) = E

z

`( f ,z). Unfortunately, since µ is unknown, L( f ) cannot be computed and,
consequently, must be estimated. The most common empirical estimator is the empiri-
cal error bL( f ) = 1

n

Â
z2D

n

`( f ,z).
The Extreme Learning Machines (ELM) algorithm is a state-of-the-art tool for re-

gression problems [3, 13, 15] and was introduced to overcome problems posed by back-
propagation training algorithm [32]: potentially slow convergence rates, critical tun-
ing of optimization parameters, and presence of local minima that call for multi-start
and re-training strategies. ELM was originally developed for the single-hidden-layer
feedforward neural networks. The weight of the hidden layer, contrarily to the back-
propagation, are randomly assigned while the weights of the output layer are found via
Regularized Least Squares (RLS) [14–16]. More formally a vector of weighted links,
w 2 Rh, connects the hidden neurons to the output neuron without any bias

f (x) = Âh

i=1 w

i

j
⇣

W

i,0 +Âd

j=1 W

i, jx j

⌘
. (1)
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where j : R! R is a nonlinear activation function of the hidden neurons and W 2
Rh⇥(0,··· ,d), the weight of the hidden units, are set randomly. Finally the weight of the
output layer w 2 Rh are found by solving the following RLS problem

w

⇤ = argmin
w

kAw� yk2 +l kwk2 = (AT

A+l I)�1
A

T

y, (2)

where A 2Rn⇥h, A

u,v = j
⇣

W

v,0 +Âd

j=1 W

v, jxu, j

⌘
. Consequently we can see A as a con-

catenation of the random projection of vectors x{i2{1,··· ,n}} based on the hidden neuron
of the ELM: A = [f(x1), · · · ,f(xn

)]T .

Algorithm 1: SGD for ELM.
Input: D

n

, l , t , niter
Output: w

1 Read D
n

;
2 Compute A ;
3 w = 0 ;
4 for t 1 to n

iter

do
5 w = w� tp

t

∂
∂w

h
kAw� yk2 +l kwk2

i
;

6 return (w,b);

Spark [21, 36] is a state-of-the-art
framework for high performance in-
memory parallel computing. The main
idea behind the Spark technology is
that we have to reduce access to the
disk as much as possible and make as
much computation as possible in mem-
ory. Moreover, since Spark is designed
to efficiently deal with iterative compu-

tational procedures that recursively perform operations over the same data, it may not
be efficient to compute the solution in the form of Eq. (2). Consequently, instead of
solving the inversion problem of Eq. (2), let us adopt a Stochastic Gradient Descent
(SGD) algorithm. The SGD algorithm is a very general optimization algorithm, which
is efficiently able to solve a problem in the following form: min

f2FH
b
L( f )+ lR( f ),

where R( f ) is a regularizer [21]. l balances the tradeoff between the over- and under-
fitting tendency of the algorithm. Based on the choice of R( f ) and bL( f ) we can retrieve
different algorithms [21]. If we set R( f ) = kwk2 and b

L( f ) = 1/n Ân

i=1 [ f (xi

)� y

i

]2 we
get the ELM formulation of Eq. (2). The Stochastic Gradient Descent (SGD) algorithm
for ELM is reported in Algorithm 1 [33].

Algorithm 2: SGD for ELM on Spark (d � h)
Input: D

n

, l , t , niter
Output: w

1 Read D
n

;
2 Compute A /

*

Compute the projection f
*

/

3 w = 0;
4 for t 1 to n

iter

do
5 g = (A,y).map(Gradient())

/

*

Compute the gradient for each sample

*

/

6 .reduce(Sum())
/

*

Sum all the gradients of each sample

*

/

7 w = w� tp
t

g ;
8 return w;

In Algorithm 1 t and
niter are parameters related
with the speed of the opti-
mization algorithms. There-
fore, usually t and niter are
set based on the experience
of the user. In any case t
and niter can be seen as
other regularization terms
as l since they are con-
nected with the early stop-

ping regularization technique [4, 30].
Algorithm 1 is well-suited for implementation in Spark and many of these tools are

already available in MLlib [21]. Basically, the implementation of Algorithm 1 reported
in Algorithm 2 is an application of two functions: a map for the computation of the
gradient and a reduction function for the sum of each single gradient.





6 L.Oneto, E.Fumeo, G.Clerico, R.Canepa, G.Papa, C.Dambra, N.Mazzino, D.Anguita

The main problem of Algorithm 2 is the computation and storage of A. If h⌧ d

it means that A 2 Rn⇥h will be much smaller than the dataset which belongs to Rn⇥d .
In this case, it is more appropriate to compute it before the SGD algorithms starts the
iterative process and keep it in memory (note that the computation of A is fully parallel).
In this way all the data Rn⇥d projected by f into to matrix A 2Rn⇥h can be largely kept
in volatile memory (RAM) instead of reading from the disk. If instead h� d, employing
Algorithm 2 we risk that A 2Rn⇥h does not fit into the RAM, consequently making too
many accesses to the disk. For this reason, we adopt two different strategies:

– if h is approximately the same magnitude or smaller than d we use Algorithm 2 and
we compute the matrix A at the beginning;

– if h� d we adopt Algorithm 3 where f(x
i

) is computed online in order to avoid to
read the data from the disk.
Quite obviously, the limit is given by the size of the RAM of each node and the

number of nodes. Until the algorithm is able to keep most of the data in memory, it
is better to use Algorithm 2. Algorithm 3 allows us to partially reduce the effect of
having to access the data on the disk by paying the price of computing f(x

i

) online.
In fact, Algorithm 3 does not precompute A 2 Rn⇥h at the beginning but it keeps in
memory the data D

n

and, at every iteration of the SGD algorithm, it computes online
both the projection induced by f and the gradient. Consequently, there is no need to
store A 2 Rn⇥h.

Algorithm 3: SGD for ELM on Spark (d  h).
Input: D

n

, l , t , niter
Output: w

1 Read D
n

;
2 w = 0;
3 for t 1 to n

iter

do
4 g = D

n

.map(f&Gradient())
/

*

Compute both the projection f and the

gradient for each sample

*

/

5 .reduce(Sum())
/

*

Sum all the gradients of each sample

*

/

6 w = w� tp
t

g;
7 return w;

In this context, the se-
lection of the optimal l and
h remains a fundamental
problem, which is still the
target of current research
[1]. Resampling methods
such as k–Fold Cross Val-
idation (KCV), the Leave–
One–Out, and the Non-
parametric Bootstrap (BTS)
[7, 19] are favored by prac-

titioners because they work well in many situations and allow the application of simple
statistical techniques for estimating the quantities of interest. Unfortunately the compu-
tational burden required by KCV and BTS is quite high for this reason the Bag of Little
Bootstraps (BLB) will be exploited [27, 26].

4 Results on the Italian Case Study
In order to validate our methodology and to assess the performance of the new pre-
diction system, we exploited real data provided by RFI. For the purpose of this work,
RFI gave access to almost one year of data related to two main areas in Italy. The data
included more than a thousand trains and two hundred checkpoints. Note that, the in-
formation has been anonymized for privacy and security concerns.

Our approach to the experiments consisted in (i) building for each train in the dataset
the needed set of models based on the ELM algorithm, (ii) applying the models to the
current state of the trains, and finally (iii) validating the models in terms of perfor-
mance based on what really happens in a future instant. Consequently, we performed
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simulations for all the trains included in the dataset simulating the online-approach that
updates predictive models every day, so to take advantage of new information as soon
as they becomes available. We compared the results of our simulations with the results
of the current train delay prediction system used by RFI, which is quite similar the one
described in [12]. In order to fairly assess the performance of the two systems, a set
of novel KPIs agreed with RFI has been designed and exploited. Since the purpose of
this work was to build predictive models able to forecast the train delays, these KPIs
represent different indicators of the quality of these predictive models. Based on these
considerations, three different indicators have been used, which are also proposed in
Figure 3 in a graphical fashion:

– Average Accuracy at the i-th following Checkpoint for train j (AAiCj): for a partic-
ular train j, we average the absolute value of the difference between the predicted
delay and its actual delay, at the i-th following Checkpoint with respect to the actual
Checkpoint.

– AAiC: is the average over the different trains j of AAiCj
– Average Accuracy at Checkpoint-i for train j (AACij): for a particular train j, the

average of the absolute value of the difference between the predicted delay and its
actual delay, at the i-th checkpoint, is computed.

– AACi: is the average over the different trains j of AACij
– Total Average Accuracy for train j (TAAj): is the average over the different check-

point i of AACij (or equivalently the average over the index i of AAiCj).
– TAA: is the average over the different trains j of TAAj

Fig. 3: KPIs for the train and the itinerary depicted
in Figure 1

We ran the experiments by
exploiting the Google Com-
pute Engine [10] on the Google
Cloud Platform. We employed a
four-machines cluster, each one
equipped with two cores (ma-
chine type n1-highcpu-2), 1.8
GB of RAM and an HDD of
30 GB. We use Spark 1.5.1
running on Hadoop 2.7.1 con-
figured analogously to [31].
The set of possible configu-
rations of hyperparameters is
defined as a set H where
H = {(h,l ) : h 2 G

h

,l 2 Gl}
with G

h

=
�⌅

10{1,1.2,··· ,3.8,4}⇧ 

and Gl = 10{�6,�5.5,··· ,3.5,4}. Finally, as suggested by the RFI experts, t0� d� is set
equal to the time, in the nominal timetable, of the origin of the train.

In Table 1 we have reported the KPIs for the proposed prediction system and for the
one currently used by RFI. Note that Trains and Checkpoints IDs have been anonymized,
and that only part of the results have been included in the paper because of space con-
straints. Although the RFI system has shown to be robust and accurate during our simu-
lations, our data-driven prediction system managed to outperform it by a factor of⇥1.65
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for TAA, since it is able to infer a model which takes into account the entire state of the
network and not just the local dependencies. The accuracy of the ELM-based method
is quite homogeneous with respect to different trains and stations. Moreover, AAiCj
grows with i as expected (the further is the prediction in the future, the more uncertain
is the prediction itself). Finally, note that there are blank spaces in the tables: this means
that, for example, for AAiCj some trains have less checkpoints (at least in the dataset
that we analysed), or for AACij different trains run over different checkpoints.

As final issue we would like to underline that if just Algorithm 2 is exploited and
not the proposal of combining Algorithms 2 and 3 based on d and h we have that in the
first case in order to train all the models of our simulation 15 hours are needed while
in the second case approximately one hour is enough. In other words, our optimization
strategy is 15 time faster than the naive approach.

Table 1: ELM based and RFI prediction systems KPIs (in minutes).

AAiCj ELM RFI ELM RFI ELM RFI ELM RFI ELM RFI
j i 1st 2nd 3rd 4th 5th

1 1.6±0.1 1.8±0.5 1.8±0.2 2.1±0.8 2.1±0.1 2.3±0.3 2.3±0.2 2.5±0.6 2.4±0.1 2.7±0.4

· · ·

2 1.8±0.1 3.2±1.7 1.9±0.1 3.4±0.1 2.2±0.1 3.8±3.2 2.4±0.0 4.2±0.6 2.6±0.5 4.6±0.1
3 1.4±0.1 1.9±0.2 1.6±0.5 2.0±0.2 1.8±0.1 2.3±0.1 1.9±0.4 2.6±1.0 2.0±0.2 2.8±0.4
4 1.5±0.1 2.0±0.1 1.6±0.0 2.2±1.1 1.9±0.1 2.6±0.8 2.1±0.4 3.0±0.7 2.3±0.4 3.4±0.4
5 0.9±0.0 1.4±0.2 1.0±0.2 1.7±0.1 1.2±0.2 2.0±0.3 1.4±0.0 2.3±1.1 1.6±0.1 2.6±0.0
6 1.3±0.1 1.4±0.3 1.5±0.2 1.7±0.3 1.8±0.2 2.0±1.9 2.1±0.0 2.3±0.4 2.3±0.0 2.6±0.9
7 1.0±0.1 1.3±0.4 1.1±0.1 1.4±0.5 1.3±0.1 1.6±0.5 1.5±0.1 1.8±0.4 1.6±0.1 2.0±0.2
8 1.0±0.2 1.3±1.1 1.3±0.0 1.6±1.0 1.4±0.1 1.9±0.0 1.6±0.1 2.1±0.3 1.7±0.1 2.3±0.4
9 0.8±0.0 1.2±0.7 0.9±0.0 1.2±0.7 1.0±0.2 1.4±0.0 1.1±0.0 1.5±1.0 1.2±0.1 1.5±0.3
10 1.0±0.2 1.5±0.1 1.1±0.1 1.6±0.1 1.3±0.0 2.0±0.3 1.5±0.2 2.3±0.3 1.6±0.0 2.4±0.6
11 1.2±0.2 1.4±0.1 1.3±0.2 1.5±0.3 1.5±0.1 1.7±0.0 1.6±0.1 1.9±0.2 1.7±0.3 2.1±0.2
12 1.6±0.0 2.1±0.8 1.9±0.2 2.6±0.8 2.1±0.2 3.1±1.6 2.3±0.3 3.5±0.6 2.6±0.0 3.8±0.1
13 0.9±0.1 1.2±0.5 1.0±0.2 1.3±0.4 1.1±0.1 1.4±0.5 1.3±0.0 1.6±0.4 1.4±0.1 1.6±0.4
14 2.1±0.2 3.1±0.7 2.3±0.3 3.5±0.8 - - - - - - -
15 1.6±0.2 2.2±0.4 1.8±0.1 2.4±0.5 2.0±0.2 2.8±1.1 2.1±0.1 3.1±0.7 2.1±0.0 3.2±1.2
16 1.8±0.1 2.7±0.3 2.1±0.1 2.9±0.4 2.4±0.0 3.4±0.0 2.6±0.6 3.9±1.6 2.9±0.0 4.1±0.6
17 1.7±0.1 2.3±1.5 1.9±0.2 2.5±0.8 2.2±0.1 2.9±0.1 2.3±0.3 3.3±1.4 2.4±0.2 3.4±0.4
18 1.1±0.1 2.8±1.6 1.4±0.0 3.3±0.6 1.6±0.0 4.3±0.7 1.8±0.0 4.7±0.0 2.1±0.2 4.2±1.2
19 1.7±0.0 2.3±0.6 1.7±0.1 2.4±0.9 1.9±0.0 2.5±1.2 2.0±0.0 2.7±1.8 2.1±0.2 2.7±0.1
20 2.3±0.5 3.7±1.7 2.5±0.1 4.2±0.8 2.8±0.3 4.7±1.4 3.0±0.2 5.2±0.3 3.3±0.2 5.6±0.1
21 2.5±0.0 2.5±0.5 2.6±0.1 2.6±0.1 2.8±0.2 2.8±1.3 3.0±0.4 3.0±0.5 3.2±0.2 3.2±0.1
22 1.9±0.3 3.7±0.5 2.1±0.3 4.0±0.9 2.3±0.0 4.3±1.4 2.5±0.3 4.6±2.1 2.7±0.1 5.0±0.7

· · ·

AAiC 1.6±0.1 3.0±0.8 1.7±0.1 2.9±1.3 2.0±0.4 3.2±1.6 2.2±0.5 3.4±0.0 2.4±0.2 3.4±0.0

AACij ELM RFI ELM RFI ELM RFI ELM RFI
j i 1 2 3 4

1 2.3±0.4 2.9±0.4 - - - - - -

· · ·

2 0.1±0.0 0.0±0.0 - - - - - -
3 0.0±0.0 0.2±0.1 - - - - - -
4 1.5±0.0 1.7±0.2 - - 1.8±0.2 2.3±0.7 - -
5 - - - - 1.1±0.0 1.8±0.2 - -
6 - - - - 1.5±0.1 1.8±0.8 - -
7 - - - - 0.8±0.0 1.1±0.1 - -
8 - - - - 1.2±0.0 1.7±0.4 - -
9 - - - - 0.7±0.1 0.7±0.1 - -

10 - - - - 1.0±0.0 1.3±0.0 - -
11 - - - - - - - -
12 - - 1.8±0.2 2.3±0.5 - - - -
13 - - - - - - - -
14 - - - - - - - -
15 - - - - - - - -
16 - - - - - - - -
17 - - - - - - - -
18 - - - - - - - -
19 - - - - - - 1.3±0.1 1.6±0.1
20 - - - - - - 3.0±0.6 5.1±0.6
21 - - - - - - 2.3±0.0 1.9±1.4
22 - - - - - - 1.7±0.1 2.1±1.0

· · ·

AACi 1.5±0.1 3.3±1.5 1.3±0.1 1.8±0.1 1.1±0.1 1.6±0.1 2.1±0.1 2.9±0.6

TAAj
j ELM RFI

1 2.0±0.1 2.2±1.5
2 2.2±0.1 4.3±0.1
3 1.6±0.2 2.3±0.1
4 1.7±0.5 2.4±0.2
5 1.1±0.0 1.7±0.8
6 1.7±0.1 1.9±0.0
7 1.2±0.0 1.5±0.1
8 1.5±0.2 1.9±0.2
9 0.9±0.1 1.4±0.0

10 1.2±0.1 1.8±0.3
11 1.5±0.1 1.8±0.6
12 2.0±0.1 2.8±0.4
13 1.1±0.2 1.4±0.4
14 2.1±0.3 3.1±0.2
15 1.8±0.3 2.6±0.9
16 2.2±0.1 3.1±0.5
17 2.2±0.0 2.7±0.7
18 1.3±0.2 3.3±0.7
19 1.9±0.3 2.5±0.1
20 2.7±0.2 4.3±1.0
21 2.9±0.5 3.0±0.1
22 2.3±0.5 4.8±1.3

· · ·

TAA 2.0±0.3 3.3±1.6
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Our future works will take into account also exogenous information available from
external sources. For example, we will include in the models information about pas-
senger flows by using touristic databases, about weather conditions by using the Italian
National Weather Service, about railway assets conditions, or any other source of data
which may affect railway dispatching operations.
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