.
Horizan 2020 -

Il European Union Funding e

for Research & Innovation I n2 Ra | l

In2Rail
Project Title: INNOVATIVE INTELLIGENT RAIL x
Starting date: 01/05/2015
Duration in months: 36

Call (part) identifier: H2020-MG-2014 Q
Grant agreement no: 635900 Q%
Deliverable D8.6 ?\L
e

Description of the Generic Applica Q:y
constituent

work and its

Due date of deliverable Month 27
Actual submission date &\ 30-07-2017
Organization name of lead contraN is deliverable SIE
Dissemination level PU
Revision Final

A A
<
}
N

GA 635900 Page 1 of 45

In2Rail

Deliverable D8.6

Description of the Generic Application Framework and its constituents

Authors

Details of contribution

Authors

CAF Signalling (CAF)
Carlos Sicre Vara de Rey
Manuel Castro Vinas

Section 8§,
contribution to 1-12

HaCon (HC)
Sandra Kempf
Rolf Goollmann

Section 10,
contribution to 1-12

S

SIEMENS (SIE)
Stefan Wegele

Sections 1-7,9, 1
contribution

Contributor(s)

Ansaldo STS (ASTS)
Gian Luigi Zanella
Matteo Pinasco

Sections 1- 12

AZD Praha s.r.o (AZD)
Martin Bojda

Michal Zemlicka
Martin Ruzicka

Bombardier Transpo %ections 1-12
(BT)

Q <<3ns 1-1

Martin Karlss
Roland Kuh
Thales THN

ot

Sections 1- 12

GA 635900

Page 2 of 45

\Y

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

Executive Summary

This document provides a description of the Generic Application Framework and is directed
at the software architects and developers of Traffic Management applications in the Railway
industry.

The overall aim of the In2Rail project is to set the foundation for a resilient, cost-effic &
high capacity and digitalised European rail network.
There are three In2Rail Work Packages relating to Intelligent Mobility Managem). In

the first 12 months of the project requirements on Traffic Management Sys VIS) from
the recent tenders, national and international projects were collected .
deliverable D8.1 requirements on Integration Layer and D8.4 req

on Application
Framework were specified.

Starting working on the Integration Layer and havingsmseveral prototypes done, the
participants came to a conclusion to use the Integratiop Layer as,a communication platform

for the functionality of the Application Framework. n and specification of the
Integration Layer will be published in D8.4 mon after this deliverable. In this
document assumptions about the Integrati yér Were made, which could be subject of

minor changes during this period.

First the experience with the Int tiony, ofyApplications in different projects, and the
historical approaches for softwaretintegtation as well as currently active projects for cloud-
intensive IT industry were ana conclusion of this analysis was that the Application

Framework shall be able to

rass the desired state of deployment and applications states
on the Integration L bserve the current state on some other topics on the
Integration Layer. speétific implementation of the desired state is the responsibility of

the future product “ ication Framework”.

The second steMomprised the identification of the information required in the “desired
state” detailed specification of the data structures describing desired and current states
is vide D8.7.

ond part of the document (chapter 10) an important question about Integration of
Usér Interfaces provided by multivendor-applications was analysed. Although the current
trénd in IT industry is moving to rendering of the application content by web browser and
providing HTML5/CSS3 based content from the cloud, it was assumed that in the near future
dedicated User Interfaces with high performance graphics will still be the main use case in
control centres.

GA 635900 Page 3 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

TABLE OF CONTENTS

EXECUTIVE SUMMARY

GLOSSARY, ABBREVIATIONS AND ACRONYMS
1 BACKGROUND

2 OBIJECTIVE / AIM

3 INTRODUCTION

4.1 STRUCTURE OF TMS APPLICATIONS

4 APPLICATION FRAMEWORK REQUIREMENTS %:

4.2.1 Integration by API

4.2.2 Integration of Executables %()

4.2.3 Integration of Virtual Machines

4.2 INTEGRATION PATTERNS IN APPLICATION FRAMEWORK ‘ Q

4.2.4 Integration of Containers

4.3 REQUIREMENTS %b
4.4 APPLICATION FRAMEWORK FU& CONSTITUENTS
5 PRIVATE CLOUD MAN M

6 CONTAINER MANAG

6.1 CLOUD FOUNDRY
6.2 OPENSHIFT

6.3 DOCKER UNIWERSAL CONTROL PLANE

SOFTWARE ON THE MARKET
THE MARKET

7 ITECTURAL DECISIONS

7.1 Identification and grouping of functions
% Relevant data objects

%.1.3 Relevant object states

7.1.4 Deployment functionality

7.1.5 App-StartStop functionality

7.1.6 Monitoring functionality

7.1.7 Canonical Data Model for AF

7

GA 635900

Page 4 of 45

20
21
22
23
23
23
24
25
26
27

28

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

8 INTEGRATION OF TMS APPLICATIONS IN ONE USER INTERFACE 31
8.1 OBIJECTIVE OF USER INTERFACE INTEGRATION 31
8.2 EXISTING APPLICATION INTEGRATION PATTERNS 31

8.2.1 Approach a

8.2.2 Approach b N
8.2.3 Approach c A
Q 33
34

8.3 COMMON VIEWS AND SCREENS IN TMS

8.3.1 Overview screen :%

8.3.2 Close-up screen 34

8.3.3 Portable screen Q 34
8.4 REQUIRED Ul INTEGRATION PATTERNS Q 34

8.5 UIINTEGRATION APPROACH 36
8.6 USE CASES FOR UI INTEGRATION % 39
8.6.1 Selection usage b 39
8.6.2 Lazy starting % 40
8.6.3 Rendering of remote cont«\ 42
9 CONCLUSIONS 43
10 APPENDIX A 44
11 REFERENCE 45
’

A
&
QV
Q

GA 635900 Page 5 of 45

In2Rail

Deliverable D8.6

Description of the Generic Application Framework and its constituents

Glossary, Abbreviations and Acronyms

* Definition extract from §Common Glossary of the [IN2RAIL D7.1] deliverable of In2Rail.

Term Description

AF Application Framework

API Application Programming Interface

Application It is a programming framework allowing plug-and-play integratien

Framework of multivendor applications into TMS.

COTS Commercial off-the-shelf

DDS Data Distribution Service —an OMG standard.

ESB Enterprise Service Bus

IL Integration Layer

Infrastructure Manager: anybody or undertakingthat is responsible
for establishing and maintaining railwayinfrastructure. This may

IM * also include the management of infrastructuire, Control and safety

systems. The functions of the infrastructure manager on a corridor

or part of a corridor may be allocated to different bodies or

undertakings.

Intelligent Mobility Managementiinformation developed as a

strategically critical asset:

= A standardised appreach’to information management and
dispatching systems«enabling an integrated Traffic Management
System (TMS).

M * » An Information® and Communication Technology (ICT)
environment supporting all transport operational systems with
standardised interfaces and with a plug and play framework for
TMS applications.

Anmativanced asset information system with the ability to ‘nowcast’
and)), forecast network asset statuses with the associated
tmcertainties from heterogeneous data sources.

In Memory Data Grid: a software installed on one or several nodes

IMDG and provides reliable access and change notifications for key-value

pairs in presence of failures.

LCG Life Cycle Costs

Messdge semantic

Definition of the meaning of every message attribute

Message encoding

Representation of the message content in bits and bytes.

Node

Computing entity: PC, server, Virtual Machine, Cluster.

QoS

Quality of services

RCP

Rich Client Platform

tion protocols

Reliable communica-

A set of messages to be exchanged between several partners which
ensures defined reliability properties in presence of failures and
message losses.

RTTP

Real Time Traffic Plan: the timeframe of the Daily Timetable
transferred from the IM planning department to the Traffic
Management Department.

GA 635900

Page 6 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents
Term Description
Railway Undertaking: bodies such as train operating companies
RU * and freight operating companies, which are responsible for the
operation of passenger and freight trains.
TCO Total cost of ownership
TOC * Train Operating Company: a company with access rights to operat
passenger trains on the railway network.
Traffic Management System: a traffic control-command ahd
TMS * supervision/management system, such as ERTMS in the
sector. %
Work Package 7: System Engineering of Intelli Mobili
WP7 . .
Management (I1°M) of In2Rail.
Work Package 8: Integration Layer of
WP8 1 .
Management (I°M) of In2Rail.
Work Package 9: Intelligent Mobili agement (I2M) -
WP9 . .
Nowcasting and Forecasting
ul

User Interface (

GA 635900

Page 7 of 45

\Y

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

1 Background

This document represents the next step in system development after requirement
specification in D8.5 “Requirements for the Generic Application Framework” in the
framework of the project entitled “Innovative Intelligent Rail” (Project Acronym: In2Rail;
Grant Agreement No 635900). This step is typically referenced as “High Level Design” in
Model software development (see Figure 1.1).

Requirement Operational

analysis testing

AN

High level design

Integration

testing

\ A)
Detailed Unit
specifications testing

O
Coding
Figure 1.1: Location,of thmnt in the Software-Development process

The WP8 activity is integratéd in evelopment process with WP7 (see Figure 1.2).
wp7.1
. wpe . . wp7.3
Requirement Generic Application
. . Proof-of-Concept
Analysis /Integration Layer

é Figure 1.2: Simplified view on integration of WP8 and WP7

consists of two main parts the Integration Layer and the Application Framework.
The Integration Layer represents the communication platform for applications to be
integrated into TMS. It will specify the API to access data (publish and subscribe) as well as
the data structures persisted and distributed by the Integration Layer. The set of data

III

structure specifications for Integration Layer is called “canonical data model” according to

the ESB term for common message formats.

The canonical data model will provide an additional specification to allow easy extensions

for future applications in TMS and railway industry in general.

GA 635900 Page 8 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

2 Objective / Aim

As part of the In2Rail project, the work package “Intelligent Mobility management —
Integration Layer” shares two major objectives:

1. Reducing Life Cycle Costs (costs for development, deployment, execution and x
maintenance of the software) for Traffic management systems,
2. Enabling new intelligent functions for overall optimisation of the traffic preces

To achieve the cost reduction two main cost drivers must be considered:

= Integration efforts — integration of a new software application H%Dently

requires the development of interface gateways introducing cos

- Interface clarification,

- Software for message conversion and aggregation, objé€et.id mapping etc.,

- Development/establishment of proprietary reliable com tion protocols
- Testing, versioning, and configuration of the gatéways;

= Absence of a standardised development platfo q each application vendor to
repeatedly solve “high availability” andshigh rmance” issues. This reduces

possible vendor market and often reguites®extensive amount of hardware, as each
application is delivered by a vend i dant hardware components.
As a consequence of both cost dri&N ing fine modularisation of the software big

monolithic applications developew vendors cover most of the TMS market.

The first cost driver is addre he Integration Layer which provides standardised

Interfaces (API), Messag emantic and serialisation), reliable communication protocols.

The second cost drivertis\covered by the standardised Application Framework, which
provides additional for:

. Resourceyana ement to solve high availability issue;

. ntral monitoring and configuration to allow one “system” view on the deployed
0 nents.
e

d of the listed above objectives (enabling of new intelligent functions) is addressed

bgoth IL and AF:
Q = |L allows easy access to standardised information available in TMS, required by future

intelligent functions;

= AF allows development of light weight Apps (not full blown applications) managed by
AF-services.

GA 635900 Page 9 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

Both components (IL and AF) are very ambitious from the software point of view. The
required functionality can be covered by different existing software solutions on the market
to a large extent. Unfortunately, neither the existing solutions provide a standardised API
nor does an agreed set of data structures for TMS applications exist. Therefore, the overall
objective of WP8 is to provide a specification of APl and the Canonical Model (see Figure
2.1).

TMS app 1 TMS app 2 TMS app 3

1I il 1

In2Rail API + Canonical model for objects

1 1

COTS Resource management COTS data communication and data

(e. g. Pacemaker, CloudFoundry, management platform

OpenShift Origin) or e.g. In Memory Data Grids (Infinispan,

IL-based implementations Hazelcast, Redis), Data Distribution
Service

Figure 2.1: Integration of TMS Applications into In2Rail platform (IL and AF) providing a Wrapper to COTS-
software and Cangnical Data model

The specification is split into two modules:
= The Integration Layer specifi€s:

- API for accessing the@@@mmunication platform and
- Canonical data model fof'communication with TMS applications.

= The Applicatiomy Framework specifies only the canonical model for resource

management,

To give an idea aboug the functional separation, an existing application server in Java-
domain can be considered:

»® Th@)L corresponds to the JMS (Java Messaging Service) of the application server;

= “WT'he AF corresponds to all the other parts — Registry, Container-management, Cluster-
Management, etc.

Asvthe separation of concepts into Communication and Application Platform already takes
place in real world, the same approach seems to be reasonable in the context of the IN2RAIL

project.

GA 635900 Page 10 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

3 Introduction

The first assumption for the specification of the Application Framework (AF) is, that the
Integration Layer (IL) is defined and ready to use. The AF shall be based on the IL and provide

additional services with the aim of offering a plug-and-play platform for light weight
applications.

The Application Framework provides a “system view” on a set of light weight applicatiens
originating from different vendors. It allows systematic:

= Deployment; Q
= Configuration; %

= Monitoring;

* management including fail-over, maintenance, load balan ez;
= Removal;
of the applications managed by the AF.

In the following, the combination IL + AF is referghced as N2RAIL-platform.
Let us consider the process of evolution f rrent TMS-applications to the IN2RAIL-
platform-based future. Current TMS applic e full blown software products containing
their own proprietary resource manageme refore the first step would be integration of
existing applications by means of % igure 3.1).
Offline timetable Dispatching system Operations control
planning system system (safety)

INC U]

IL: APl and Canonical model for TMS data

I I

Crew
management

Q v Information System system

Figure 3.1: Integration of legacy systems by the mean of IL only

Passenger

As long as the cooperating systems manage their availability themselves and support
different departments with their own system administrations, a central management,
monitoring and configuration of the entire system is often not required. In this case the
Application Framework can be omitted.

GA 635900 Page 11 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

In the future it is assumed that TMS will be created by many Apps representing a form of
microservices design pattern and originating from different vendors (see Figure 3.2). In this
case the usage of an Application Framework is inevitable.

Big Application Big Application \
1

2

]]

IL: APl and Canonical model for TMS data

1 N L |

Appl App2 App3 AF: Monitoring AF: Configuration

T 4 - '

AF: Container management

Figure 3.2: Integration of light-weight s by the means of AF

In such a deployment the Applicati r\ ework manages the light-weight Apps and
tiok functionality.

GA 635900 Page 12 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

4 Application Framework requirements

To identify the requirements of the Application Framework (AF) first the applications that
shall be managed by the AF and used integration patterns were analysed.

4.1 Structure of TMS applications x

The TMS applications are structured around the data in real time. The major data blgcks are

Infrastructure .:

shown in Figure 4.1.

Maintenance plan

Process image

Crew to trip Real time traffic

assignment plan

Energy plan

Rolling stock to trip
assignment

sure 4.1: Main data blocks in a TMS

The TMS applicati;ns ovide following general functionality:
= present the data from the above modules to the users (10-50 per control center);
ec

e user input (routing commands, timetable modifications, workflows with RUs

%c.), implement input validation by calculating forecasts and provide decision

roposals.

on (often) eight monitors currently requires installation of a client computer with sufficient

Q% representation of such large amount of data in the frame of high performance graphics

hardware resources (e.g. Intel i3-processor with 16 GB RAM). The client hardware often

supports some part of safety functions, e.g. providing safe track view.

The server functionality is typically divided into safety relevant and timetable related parts.

The number of servers is constant during the day.

GA 635900 Page 13 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

In many existing installations the operators are working on the shared Real Time Traffic Plan
(RTTP) containing planned train movements, train connections, planned possessions and
restrictions and covers between 8 and 72h. This RTTP for a medium sized network is 1-2
GByte. Any modifications of RTTP shall be automatically analysed by a forecast algorithm
and the result of such analysis shall be represented to the users.

Even with this simple case the amount of network communication is quite large: one shared
forecast with about 1-2 GBytes shall be distributed to 30-50 workstations during less than
one second. Often basic analysis is done on the operator’s workstation and th&"detailed
forecasting is done after application of the changes on the shared RTTP on_one powerful
server, managing RTTP.

To be able to manage such amounts of data each workstation is typicallysprovided with a
cache of the shared RTTP and only delta-information is transmitted.

To be able to represent the current field state the operator’s workstatign is provided with a
cache of the Process Image (train positions, switch positions, currently active restrictions,

possessions etc.).

In future applications (e.g. in recent tender frop» BaneNQR) the operators will be able to
analyse their modifications in a sandbox, i.e. gach opéegator will have her own “copy” of RTTP
and shared Process Image. With current akchitectowré of the operator’s workstation the AF
shall be able to manage not only “apofnymeus™ hardware executing server functions, but
also the dedicated nodes for each workstation.

A general architectural patteriisfor TiMS-services is shown in Figure 4.2. The TMS-service
observes a set of Topics (1-3) imy\@dvance, receives its requests from one of the topics and
publishes its results on,soméwther‘topics.

Topicl Topic2 Topic3

A\ 4
A —
Request TMS service Topic4
topic

Figure 4.2: General architecture of a TMS service

GA 635900 Page 14 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

4.2 Integration patterns in Application Framework

As the second step the integration patterns available for the applications were analysed.

4.2.1 Integration by API

This kind of integration provides the highest performance — instead of sending messages
over the localhost-interface direct programming calls are applied. Especially for small
messages the performance improvement is by a factor of twenty.

Historically one of the main concerns during specification of CORBA [OMG CORBA] was the
transparency between local and remote object invocation: the client apglication_calls a
method of an object without knowing, if it runs in the same process, on i&same néde or on
a remove machine. This allows the flexibility for allocating the modules ‘on different nodes
(remote), starting as independent programs (remote) or loading as dysamic’libraries (local)
per configuration. This logic is still used in several Application Serveéss, as they use CORBA
protocols for internal communication.

A similar implementation is provided by ZeroC-Internet Communication Engine (ICE) with the
module IceBox (see Figure 4.3).

Middleware

A 4 \ 4

DLL module 1 DLL module 2

Executable process

Figure 4.3: Collocated invocations inside of one executable in ZeroC-ICE

The IceBex loads dynamic libraries and communicates with them using “remote” protocol.
All mo@dules loaded into one IceBox communicate with each other by means of local calls.

The BPS implementation OpenSplice provides a similar way for integrating services.

IN\MSwapplications a typical use case is the run time calculation module (see Figure 4.4).

GA 635900 Page 15 of 45

In2Rail

Deliverable D8.6

Description of the Generic Application Framework and its constituents

Train

speed and position

at time Ty

Train

dynamics

S

Track

dynamics

-

Speed

restrictions

J

Often each Railway company has its own train dynamics(database
calculation algorithms, which often already exists a d icYi

It is assumed that the APl based integration i
shown above. The Integration Layer will provid
general TMS applications. Therefore th

Runtime
calculation

Train

speed and position

at time T

Figure 4.4: Integration of Runtime calculation servi A

Application Framework.

N

4.2.2 Integration of Executab es\

n archive containing all required artefacts to start an

An executable can be represent

application from an oper

packet managers a

It is assumed that

use

\
S

ith preferred run time

special cases like the example

bandwidth to enable Integration of

integration was excluded from the

stem by one command. For deployment of such applications

g. apt (dpkg) in Debian based Linux.

ting a Container from an Executable is a relatively easy task. In

comparison to b’e eXecutable the container technology provides so many advantages,

especi
Network
ra ork.
4. Integration of Virtual Machines

a much better isolation of the concurrently running applications in CPU, RAM and

ge, that it was decided to exclude Integration of Executables from Application

t the current state of IT the Virtual Machines represents a highly reliable technology for

isolation of Applications. Assuming a multivendor TMS the Infrastructure Manager can have

a full control on the software modules running in his data centre.

It is assumed the VM to be in the near future the most used way for integration of TMS

applications, therefore it shall be included into the Application Framework.

GA 635900

Page 16 of 45

\Y

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

4.2.4 Integration of Containers

Containers represent a light weight virtualisation technology, where the software in
containers is running under the same operating system. The isolation of the processes is
implemented by means of the host operating system. In the context of Open Container
Initiative the interfaces for the management of containers will be standardised. Several
platforms on the market support the management of Container Integration [Openshift
2017], [CloudFoundry 2017], [Kubernetes2017] having different approaches of integration

It is assumed that in the future the innovative TMS applications with short deployment
cycles will be integrated by Container Virtualisation. Therefore they should b&uincluded’into
the Application Framework.

4.3 Requirements

It is assumed that TMS applications will be provided either as Viktual Machines or as
Container therefore the word Application means an application delivered as Virtual Machine
or Container.

It is assumed that one TMS application can contaim.one opmere TMS services.
The requirements from TMS applications are:

= The TMS services are stateful with a,statéyof 1-3 GB in RAM. They must be provided
with caches before they can start toshandle user requests;

= The required failover timeNin some projects is smaller, than the time needed for
cache transmission. ThereforeNif required the services must be pre-started in hot-
standby mode;

= |t must be ensuredy, that only one instance of a service is able to write to specific
topic on IL t@%epnsurésthat decisions are only made in one place. This functionality can
be implemented on'the services themselves or provided by Application Framework.

The responsibility’of the Application Framework is:

= “Deploy TMS application on some execution environment;

%, _Manage start on demand by observing “request topics” and by timer;

= ‘Manage service failover by means of hot and warm standby;

= Manage service leader: from several running instances of a service with identically
configured inputs and outputs only one is allowed to write to the output topics. A
new leader is selected only if the previous leader has crashed;

= Application Framework manages TMS applications on backend servers and dedicated
operator’s workstations as well.

GA 635900 Page 17 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

4.4 Application Framework Functions and Constituents

The Application Framework is a product which will be provided by an external vendor. The
vendor can take any existing implementation on the market as a basis and extend it as
needed to be able to fulfil the requirements of the AF.

In the context of this document it is intended to specify only a set of data structures, need \
to represent the desired state of the managed TMS services and to observe the current stat
of TMS services. The responsibility of the Application Framework as a productei

implement the desired state and to provide the current state of TMS in sp da
structures on the Integration Layer.

In the AF-data structure the term Node is used, which is either the d ntre cluster for
running Virtual Machines or Containers, or the operator’s workstati

To provide monitoring functionality independent from used C ontainer-Management
and allow tight integration into TMS, the states of the Nodes;y Applications, and Services shall
be published on Integration Layer using standardised d a@res.

GA 635900 Page 18 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

5 Private cloud management software on the market

Assuming that in the near future the TMS applications will be integrated into Application
Framework as Virtual Machines the Application Framework shall be able to distribute and

manage them on a cluster of nodes — cloud. The cloud could be private in the case where the

nodes are located and belonging to the Infrastructure Manager (IM) or the IM could rent x
cloud from an external cloud provider.

There are several solutions on the market for building and managing private clou
f er-V

= System Center Virtual Machine Manager (VMM) as a management
from Microsoft [MS VMM 2017];
= vCloud Suite from VMware [VMW 2017];

= CloudPlatform from Accelerite [ACCP 2017] (former Citrix_pro ;
= CloudForms from Red Hat [RH CF 2017].

In addition to these tools there are numerous third-party products that provide additional
capabilities, such as multi-platform support, the ability to,réelaimn wasted space, and virtual
machine monitoring for optimal performance. Examples are as follows:-

= VMTurbo Operations Manager Cloud Edi T2017];
= Embotics vCommander Enterprise anagement Software [EMB 2017];

= Solarwinds Virtualization Man cx M 2017].
i

t is assumed that the AF-Vendor would be able to

Considering the volume of differengto
create a small wrapper, which % use the desired state represented on the Integration

Layer to create commands on thefCommand Line Interface provided by most of these cloud
management tools.
t\ ’

GA 635900 Page 19 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

6 Container management on the market

Containers include the application and all of its dependencies - but share the kernel with
other containers, running as isolated processes in user space on the host operating system.
As an application can be provided in form of container the next sections show the container
management software on the market.

6.1 Cloud Foundry

The open source project CloudFoundry (CF) provides a Platform as a service (seetfigure 6.1)
[Winn 2017]. It is located on top of an “Infrastructure as a service”-provideg and, simplifies
container management. The system integrator can push a containerinto CR, configure
connections to CF-services (like databases, middleware, etc.) and define howymany instances
of the container shall run. The CF ensures that the configuration i$umplemented even in case
of failures (hardware or software).

App 1 App 2 App 3

Cloud Foundry

BOSH

Cloud Provider Interface

laaS/Hardware

Figure'641: Cloud Foundry layers [Winn 2017]

CF defined an interfaee to, Infrastructure as a Service provider (Cloud Provider Interface),
which allows usagéfef manyydifferent hardware providers as well as dedicated hardware.
The BOSH module man@ages virtual machines (creating, movement, deleting) and installation
of the CF-components as distinct software (e.g. Databases, User management, etc.).

Cloud JFoundry supports the software development process including building, deploying,
mofitoring,managing user access and authentication, logging, failover etc. The applications
ean bepushed” to the CF either as a source code or as a container.

Thé CloudFoundry requires from the Application a set of requirements — the twelve factors
contract. Some of them are listed here:

= Stateless — containers are not allowed to store anything on container disk;
= Logging must be implemented through standard streams;
= Configuration of the container at runtime is done by environmental variables.

GA 635900 Page 20 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

CloudFoundry provides Applications with additional services using environment variables:
= Data base management systems (Redis, MySql, Postgresql);
= Message Bus (NATS);
®= In Memory Data Grid (e.g. Hazelcast on Pivotal CloudFoundry).

Additional services can be integrated by CF-provider as required. The services are started x
and managed on dedicated Virtual Machines by the Bosh module. The Applicatio
implement only the business logic — the data management modules are provided, by the
CloudFoundry. Q

6.2 Openshift

Openshift is a similar project by Redhat Inc [Openshift 2017]. It has se bprejects:

= Openshift online with commercial platform provided by Redh
= Openshift origin is an open source project.

It is based on Container management software Kubernetes by Google. It tries to make
container creation and management transparent {to tware development. The

developer configures her source code project andsmanages it in the Openshift project in the
same ways as with versioning system (see Figure Openshift even uses Git as a part of
the interface.

Project config create '
compile
\ 4
linking
Source code DBMS
(e.g. Java) v driver
creating
container
Y 4 Java VM
P 4
. A\ 4
Run config s »| Run/stop
_ Openshift

Figure 6.2: Schematic overview of Openshift

n addition it provides commands for monitoring, archiving/backup, movement of projects
between development, test and production environments.

GA 635900 Page 21 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

6.3 Docker Universal Control Plane

Docker Universal Control Plane (UCP) is an add-on component of the product Docker
Enterprise Edition. [Docker 2017]. It provides an enterprise-grade cluster management with
the following functionality:

= Monitoring of the cluster nodes (CPU load, memory, services, containers, etc); x
= Centralised cluster management (adding/removal nodes);
= Deployment, management, and monitoring of applications and services.

Access to the UCP is controlled by build-in authentication mechanism or by in @ n of

LDAP services. %

GA 635900 Page 22 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

7 Architectural decisions

It is not the aim of IN2Rail project to specify and develop a new container management
within the Application Framework. The objective is to use existing implementations as much
as possible and provide a narrow wrapper to separate them from “long-term” applications in
the railway domain.

Architectural decisions are derived using the following approach: Q

= |dentification of required functions and grouping them to “functionalities”
= |dentify information flows required by the functions (Topic structure
= Define data structures needed for implementation of the require ctions®

7.1.1 Identification and grouping of functions

The single functions of the Application Framework can be groupe r (see Figure 7.1).
Deployment Monitoring StartStop
functionality functionality functionality
- install - publish service - start
- update states - passivate
- remove \ v - stop
Application Framework Constituents

pplication Framework functionalities

In the context of IN2R wing decisions were made:

= |ntegration L vers all communication aspects between TMS and Application
Framework;
= T requ(ed data structures (messages) are specified as part of Canonical Data
el.

thisgense the AF is an optional add-on to the IL-specification.

7. elevant data objects

n the existing projects different words may refer to similar things. Therefore the used
terminology shall be introduced before the functionality description.

App: as already mentioned in Section 4.2.3 and 4.2.4 as integration entity either a Virtual
Machine or a Container is considered. The name App is used as abbreviation of Application

under the meaning VM or Container.

GA 635900 Page 23 of 45

\Y

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

Service: is a functionality which reads and/or writes to Topics on the Integration Layer. It is
assumed that one App provides one or more services.

Node: an execution unit — can be a computer (e.g. an operator’s workstation), or the entire
data centre, if AF is managed by existing cloud based projects (CloudFoundry, Openshift,
Kubernetes, etc.).

7.1.3 Relevant object states

App A
The concept of App has two aspects: %

= Deployment: create an accessible copy, which can be started on €;
= Start/Stop: actual activation of an App, which is similar t ting/stopping of an

executable.
Service v
As the service is a part of an App, it does not requir@dling for deployment. The

only relevant states are:

= Started;

= Stopped;
= Passive — ready to start writing t\ t standby).
Node &

To be able to handle cloud in \re it is assumed, that the Application Framework is
n

able to start and stop nodes acc o some logic for the sake of
= Energy saving;
= Cost saving | cl environment;
= Hardware maintenance;

= Tests. 4

In th &ng the functionalities required from Application Framework were analysed. As
a ulb data topics on Integration Layer needed for implemention of the Application
ework were provided.

Inée following many the states and objects are noted by their identifier. The “CamelCase”
notation is used for combing words to an identifier; e. g. the Topic with identifier equal to
DeploymentState contains data structures representing the deployment state of the
applications.

GA 635900 Page 24 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

7.1.4 Deployment functionality
The deployment function has the following responsibilities:

= Ensuring that the configured Applications are installed on the configured Nodes from
configured repositories;
= Handling of the changed software version shall depending on the configuration: x

- if required, the old version is uninstalled before installing the new version,
- the new version of an application shall be installed, A
- if required, the old version is uninstalled after installation,
- concurrent usage of two versions in one Application Framework m
supported;
o

= Uninstalling the software first, requests to stop all running ser rvation of

this behaviour, and if finished, removal/archiving of the old

The deployment function shall observe the “desired deployme on the node and
compare it with the actual node state (see Figure 7.2). oon as,a discrepancy occurs, it
shall implement changes in each node. A central logi¢”is hot required. Therefore, on each
node a Deployment process can be started.

S

AppConfig W
Topic

DeploymentState

Topic

DeploymentService ‘(DeploymentState
4 Desired (on each node) Topic
DeploymentState | 4
Topic
_ g Y,

x DesiredAppState
() requests
NodeState q

Topic

Topic
J
v Figure 7.2: Information flow for Deployment Service
DeploymentService is running on each node and subscribes to the following Topics:
= AppConfig Topic contains configuration of the App, like required OS, RAM, CPU,
provided services etc.;
= DeploymentState Topic contains currently installed Apps assigned to Nodes;
= DesiredDeploymentState Topic contains the next deployment state to be achieved by

AF;

GA 635900 Page 25 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

= NodeState Topic contains the load and life statistics of each Node managed by AF
(running since DateTime, current CPU load, free RAM, etc.)

The DeploymentService writes to:

= DeploymentState Topic to publish the newly installed/uninstalled Apps on the node
managed by DeploymentService-instance;

= DesiredAppState-Requests Topic is used to publish request to stop Apps on spécifi
nodes before uninstalling Apps on it.

The detailed use cases are specified in D8.7.

7.1.5 App-StartStop functionality %

The App-StartStop function shall start and stop deployed Apps depe% :

= Desired AppStates requests coming from outside (u co
service etc.); :

and, deployment

Data published on configured topics;
= Timeouts.

In case of problems (e.g. missing access rights, wrong data‘types, etc.) the App publishes the
errors on App-StartStop-Errors topic.

A crucial functionality represents a “single tern — the ServiceStartStop function shall
ensure that only one instance of a ice is\able to publish in IL, if configured so. In the case
of a program crash it shall decide ofmthe ngde where the function shall start.

A typical use case for a singl

e service collecting timetable change requests from
operators, validating th tting them into a unique sequence. Two such active
services could create t “sequences” as they receive modification requests

asynchronously.

Potentially single}m nction can be implemented by a distributed consensus algorithm
e Apps [Cachin et.al.2006]. To simplify the implementation it is assumed, the logic

tStop-Decisions will be active in only one central instance (StartStop Controller).
ral instance will publish its decisions (see Figure 7.3), which will be implemented by
ocesses on each Node (AppStartStop Service) (see Figure 7.4).

GA 635900 Page 26 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

4 N
DesiredAppState
requests
Topic
o /
4 N\
DeploymentState
Topic v
N J
.| StartStop Controller DesiredAppStat
Topic
AppState Topic 7y

NodeState W

Topic J

Figure 7.3: Information flow for StartStop Controller deci which and service shall run on which Node
4 I
DesiredAppState
Topic
— | KL
e N =
DeploymentState R AppStartStop AppState
Topic Service Topic
J
-
AppState
Topic
.
Figure 7244: Information flow for AppStartStop-Service implementing the Leader-Decisions on each Node

Onlypconfigured Apps will be managed by AppStartStop-Function. All the others can be
anagéd independently and cooperate with each other by mean of the IL only.

ices specified here represent only one possible implementation. In the context of
ocument only a specification of the Information-Topics and Message-Types is required.
7.1.6 Monitoring functionality

Monitoring function publishes states of nodes and services on IL. It shall be independent
from the existence of other AF-Functions. Therefore:-

= Apps states shall be published by Apps on AppState-Topic.

GA 635900 Page 27 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

Publishing other states:

= Node resource states (Performance monitoring: CPU, Bandwidth, RAM) shall be
published by NodeManagement-service;
= DeploymentStates shall be published by each instance of DeploymentService.

7.1.7 Canonical Data Model for AF x

The Canonical Model has two main aspects:

= |t provides a way to navigate the model by composite relations (child-pare

= |t specifies the attributes in detail to be used for serialisation and dat nag nt.
The AF-Part of the Canonical model has its root class “AF” — abbrevi Application
Framework.

It manages Nodes and Apps using configuration and state-data (&27.5).

-

AF (ApplicationFramework)

AppConfig

ServiceConfig

Node

Deployment
AppState

V4 [NodeState } T
Q RunServiceState
v Figure 7.5: UML Class diagram for Deployment, StartStop and Monitoring services

e class diagram of Figure 7.5 the classes DeploymentAppState, RunAppState and

odeState participate in two composition relations to each Node:
= As currentXXXState and

= As desiredXXXState.

RunAppState]

GA 635900 Page 28 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

That means the Node has e. g. an attribute with name currentRunAppState and
desirecRunAppState referencing objects of the same Class RunAppState. The same is valid
for NodeState, DeploymentAppState.

This reduces the number of required classes and simplifies the services comparing desired
and current states.

In the following the classes in the AF-CDM will be specified in detail.

7.1.7.1 AF.AppConfig &

For an Apps different attributes shall represent in CM:

= \ersion;

= Vendor;

= Available services (s. ServiceConfig);

= Runtime dependencies from other services; Y

= Deployment dependencies from other Apps (typically not néeded, as an App shall be
able to operate alone);

= Node requirements (OS, RAM, CPU, Bandwidth);

= Application UUID.

7.1.7.2 AF.AppConfig.ServiceConfig

A service represents a functional 'NI reads from and writes to Topics in the

Integration Layer. \

A ServiceConfig shall specif

= Topics which itds a isten to including Quality of services (QoS);
= Topics whickpit is a o write to including QoS;
= Starting stratagy: Singleton vs. non-singleton. Typically it shall ensure that only one
instance isable%to write to a specific topic — as long as “writing” topics are different,
eral instances of “singleton”-services can be started;
Load-balancing strategy: any, max networks, max CPU, max RAM or weighting factors
%r thése aspects;
gging level.

%EServiceConfig can reference Topics specified in the Integration Layer (standard topics) or
Q pecify its own Topics as well as data types.

7.1.7.3 Node.desiredDeploymentAppState
The NodeConfig represents the desired state of the Node and shall contain:

= List of Apps to be deployed with the deployment state (installed, archived).

GA 635900 Page 29 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

7.1.7.4 Node.currentDeploymentAppState

It represents the installation status of an App on a Node. Possible values are
installed/installing/deinstalling/archiving/archived.

7.1.7.5 Node.currentRunAppState.ServiceState

It represents the current state of the service: running/stopped/passive. The state ca \’
extended by: A

= runningState: running/stopped/passive;

= Load % (activeTime/totalTime);

= Active/Inactive; %
= Communication statistics (per Topic);

= Current Logging level.

7.1.7.6 Node.desiredRunAppState.ServiceState v

It represents the desired service states assigned to nodes whigh service shall be in which
state at which node. The values are coming either fro odeManagementlLeader or e.g. an
administrator Ul/command line interface.

Using this class independent from the Node a guest for new Nodes to be started in
a Cloud, if such functionality is required.\
7.1.7.7 Node.currentNodeState

It represents a load state of \ to be used by NodeManagementLeader for load
balancing. It shall cont@

= CPU load, %;
= Available RA
= Available persistence space (for logging/deployment);
Used ban8width MB/sec;
ilable bandwidth MB/sec.

.7.8, Node

Basides the mentioned composite-attributes it contains only the ID and allows specification
simple keys /AF/node[238]/nodestate. The main purpose is to simplify
ubscription/management of the key-values in IL.

GA 635900 Page 30 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

8 Integration of TMS Applications in one user interface

8.1 Objective of User Interface Integration

The main functionality of AF is container management. Integration of TMS-Application into
one user interface does not belong directly to the container management. The missifig
approach for Ul integration can prevent the splitting of TMS-functionality into modules‘and
thereby making IL and AF obsolete. In recent tenders and projects the IMs insisted.en Rawing
one TMS-system with shared menus and navigation bars, consistent navigation between
views and a common look and feel.

Considering the current market, the TMS functionality is split in bigger modules — each
covering all requirements of the corresponding user of the module: operator, dispatcher,
timetable planner, RU-portal, maintenance manager, etc. In mafjagases, these roles require
non-overlapping functionalities; therefore, they can be managed by'software products from
different vendors with a slightly different look and feel.

It is assumed that the future TMS-Applications will cohgéntrate not only on traffic control,
but also on traffic optimisation. Supported by optimisationfalgorithms the human users will
have to consider more aspects in their decisions. More aspects automatically mean having
more integrated applications in one Ul,“€gwdispatching decisions could depend on the
current state of the energy system reduiring Ukintegration of both applications.

In the following sections possibilities andyrequirements of integrating TMS applications into
one Ul were analysed. The isstie“ef integration is not restricted to TMS — as the entire IT
industry has been facedewith,it for the last 30 years. One of the well known solutions is
COM/ActiveX-technol6gy integrated in Microsoft Windows since 1996. It is not intended to
solve this issue in thissdelivérable with a solution covering several programming languages,
running on differentYoperation systems and covering rising use of cloud technology to
provide remote UJ5.

The obdjeetive is to provide an optional, basic integration mean for Ul integration of future
TMS;zapplications.

832 Existing application integration patterns

Arvapplication is usually specified in three layers: the data layer, the business logic and the
user interface layer.

The integration of applications in general can be realised in three different levels (see also
Figure 8.1):

a. Integration on the data source level, this means the data sources are integrated and
a common business logic and user interface is developed;

GA 635900 Page 31 of 45

In2Rail Deliverable D8.6

Description of the Generic Application Framework and its constituents

b. Integration on the business logic level, this means an integration of the business logic
and on top of the integration a common user interface is developed,;
c. Integration on the user interface level, this means an integration of several user

interfaces.
B B \V
Common User Interface Common User Interface Integration |
T T T -
Common Business Logic Integration J ul ul ul
L} ! 1 ! !
Integration BL BL BL BL BL BL
e e C“) - - -
Data Data Data Data Data Data Data Data
e

Figure 8.1: Different levels of integration \

Regarding the TMS integration, the following solutions cands® mentioned.

8.2.1 Approacha

Integration on the data source level is implerma€nted byWL already as all applications use
shared data source provided by it.

8.2.2 Approachb \%

Integration of different business IK%O e common user interface seems to be the next

step in evolution of TMS app where existing “big” applications with Rich Uls are

0
extended by Apps coming \fro ifferent vendors (see Figure 8.2). Especially decision
b nted in this way.

% dispatcher

Big TMS application

support functions cou

A

’
(e.g. Dispatching)
A 4 A 4

Integration Layer

}\
N

App 1 App 2

Figure 8.2: Integration of “blackboxes” providing business logic only

GA 635900 Page 32 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

A reasonable way could be the specialisation of some vendors to deliver only Ul and keeping
all business functions separated running in the AF (see Figure 8.3). To enable this kind of
integration no additional specifications are required:the IL provides Topics with data to be
represented and Topics for modification requests. The Ul application shall be able to
represent the first and to write to the second Topics. The information transformation
between these Topics can be done by backend applications without Ul. This approach (s
possible because many Views in TMS are more or less de facto standardised as follows inithe

X

App 1 (Ul)

next sections.

Integration)Layer

App 2 App 3 App 4 App 5

Figure 8.3: UI"App toyrepresent topics and publish requests

8.2.3 Approachc

The last kind of integratiomis,the most challenging one. To ensure a full Ul integration the IT
industry created the\coneept of a RCP (Rich Client Platform). Existing implementations are
limited to one programming language enabling the integration on the binary level: one
module 4ealls another module synchronously using binary calls. It is not intended to
standardise such infrastructure, but only to provide additional topics on IL to allow
asyneh#onous information exchange. This restriction influences possible Ul integration
patternsyquite strongly.

In the following common views in TMS to identify required integration patterns are shown.

8.3 Common views and screens in TMS

Within Task 7.2 of In2Rail the Standardised Operators Workstation has already been
specified. During this study the required hardware of a future TMS as well as the views of
the user interface for specific roles have been addressed.

GA 635900 Page 33 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

In deliverable 7.3, it is proposed that the standard TM workstation consists of three screens,
named:

a. Overview screen;
b. Close-up screen;
c. Portable screen.

In which every screen has its own layout structure.

8.3.1 Overview screen

The overview screen is the main screen to display available information. Theflayout,of ¥iews
is pre-defined for each role, but the layout of the views is configurable.

8.3.2 Close-up screen

The close-up screen is a touchscreen and, next to keyboard and mouse, it should be used to
control the overview screen. It could be used to configufe the size of the views and the
information displayed in the views. As in the overviewscreen the views are pre-defined per
role.

8.3.3 Portable screen

The portable screen is an addition tg the“™elgse-up screen. It always shows the same
information as the close-up screen df theNportable screen is docked in the docking station
the display is disabled. Only whemthe iser needs to carry information for discussion, the
portable screen can be taken away,to display the same information as the close-up screen.

8.4 The views that shalhbe available for a standardised operator’s workstation
are also dasgribedyin D7.3 and part of it shown in the Table 10.1 in
Appendix A.Fhe*full table is shown in D7.3 Chapter 4.10.4 “Details of
Views”. T#e views within one screen can be available as single user
interfaces from different vendors, but they should have the same look and
feel.Required Ul integration patterns

Te ahalyse integration patterns two concepts shall be separated:

» Ul Toolkit, like SWT, Qt, JavaFX, and Motif with the main objective to draw graphical
primitives like Buttons/Text/Widgets/etc. on the screen and 2D and 3D contents;

= Rich Client Platform providing all building blocks for creating an application from
plugins. Typically, an RCP uses the Ul Toolkit to harmonize Ul representation of
integrated Plugins.

To identify the required integration patterns one of the most successful RCPs on the market

has been analysed — Eclipse. Other Ul-Toolkits enable structuring bigger applications in
GA 635900 Page 34 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

modules (plugins) as well, but only Eclipse is a basis for hundreds of independent projects
integrated into many applications.

The architecture of Eclipse RCP is shown in Figure 8.4.

Programm module (plugin)

Plugi Integrates itself
ugin Draws itself v
description RCP
A\ 4 \ 4
Container management (OSGi) Ul Toolkit (SWT)

Programming Language (Java)

Figure 8.4: Architecture overview of Eclipse RCP

Eclipse is based on a common programming language “enabling direct program calls,
information hiding by “Interface”-concept, and synchroneusflogic. The plugins are delivered
in form of a JAR-Archive and called a “bundle”. Theyuse Ul Toolkit directly for management
of their representation.

The basic integration pattern in Eclipsé€’is quitesimple:

= One module provides extension paeints;
= Other modules provide extensiops;
= The extension paintsiandextensions are specified as textual documents in XML-

format, enabling,appliéation creation by configuration.
The main Ul integratiompattern represents the concept of Action.
An action is a class,containing:

= l@bel (to be presented in Menus);

¥ |comy(to be presented in Buttons/Tool bars);

=W Description text to provide Help/Tooltip information;
=nState — enabled/disabled.

forder to provide the State, Actions are often connected to the concept of Selection. Each
Window has its own Selection-Object, which is a list of currently selected objects. An Action
can subscribe to it and decide if it is enabled or not. For instance an action showing detailed
information about a signal observes selected elements and is active only if a signal is
selected for which it has detailed information.

GA 635900 Page 35 of 45

In2Rail

Deliverable D8.6

Description of the Generic Application Framework and its constituents

In Eclipse there is a distinct plugin representing an Application, provided by the application
vendor. It reserves sections for further extensions in its:

= Menu bars;
= Tool bars;
= Context menus.

and publishes them as extension points. Other applications provide extensions in the forin o

Actions-sets.

Actions from extending applications are provided to the user in Menus and
selected, the RCP calls the function Action.run. Here, the extending applicati

to do:

= Ask the RCP to open a new View or Editor;
= Change selection in one of the previously open views;

= Do some calculation, etc.

A UML class diagram in Figure 8.5 represents the integration pattern.
Window
Selection ISelectionlListener IAction

N

[

I

ShowsSignalAction

ure 8.5: UML Class diagram for Ul Integration in Eclipse

In the next section the mentioned Eclipse Integration patterns are mapped into the

infra ure provided by AF and IL.

integration approach

Thé most crucial aspect missing in IL/AF in comparison to Eclipse is a common RCP. In Eclipse

the modules use it for:

= Integration of their content into one Layout;

= Representation of shared Buttons, Icons and Text fields;

= Exchange of context information, e. g. selections.

The first two elements are provided by the Ul Toolkit used by RCP as a basis. In case of
Eclipse it is SWT for desktop applications, and some other libraries for web applications.

GA 635900

Page 36 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

In case of In2Rail-Platform it cannot be assumed to use a common Ul-Toolkit because:

= The modules can be developed in different programming languages and;
= Ul Toolkits are programming language specific;
= Risk of short life time.

Some kind of exception represents the ActiveX-approach, where the Controls provided x
Windows can be used directly by applications, replacing the Ul-Toolkits to some extent§Bu
this interface seems to be outdated on the one hand and is supported only with Win n

the other.

s
Due to the decision to use IL as a communication platform, the %Dcan

communicate by publishing their states on some Topics and Subscriptio

A possible architecture of Ul integration is shown in Figure 8.6. T inders in the figure

represent Topics on the Integration Layer. v

App with extension

points

A

Fired
Actions

ActionSets

Selections

Figure 8.6: Integra?n of Applications into Ul by means of Actions and Selections (metaphor: Eclipse RCP)

Here '%tailed description of the constituents:
%p ith extension points: any Application can provide a Ul as one or several

indows;
= Selection topic publishes the list of selected objects. A selected object is represented
as an address specified in the Canonical Data model, e.g. /tms/signals[s8231];
Q = ActionSet — is a list of Actions the application with extensions is able to apply now. It
is assumed that the App will update this list 10-30 ms after each change of Selection.
The App with extension points have to ensure that there is this time interval between

the change of selection and construction of context menus, so that it can represent
the most current state of actions.

GA 635900 Page 37 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

It is assumed that an Action to be represented by two objects:

- Static containing Label, ToolTip text, and Icon as a binary string in PNG or SVG
format,

- Dynamic object representing the current state (enabled/disabled) and assumed

current selection fits to the assumed selection in the action and skip actions wi

selection mismatch;
= |f the user activated an Action by selecting a menu or pressing the tool bu e

Application with extension points publishes:

selection objects. The Application with extension points is able to check, if the x

- theld of the action,

- the current copy of the selection, %

- Window position on the screen,

- Mouse position on the screen to enable reactions close to equested Window,
- Widget-handle where the app expects the extension t content;

The App which provided this Action reacts according to its logic.

= In many cases, the Applications will be in d developed, therefore the
Application with extension points will know, many Views the application
issuing the Action represents on the Activa vent. Therefore it is assumed that in
most cases Applications will repre Ir€ontent in distinct Windows. This fact is

represented by ApplicationWi

\ s in the class diagram.

The next Ul-integration aspect is\tela to relative positions of the applications on the
workstation. To handle it an itional service shall be started on each Node with Ul: Ul
controller (see Figure 8.7).

App
Window

Position
requests

Layout

é Position

ul
Controller

Figure 8.7: Synchronisation of windows locations on the workstation with help of Ul controller

GA 635900 Page 38 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

The TMS-tenders often require configurability for positioning of Windows on the Desktop.
They comprise:

= Prescribed areas for each Application-Window in pixels;
= Prevention of overlapping for specific windows;
= Store/Restore the size and position of all Windows.

All these functions are implemented by the Window Layouter concept. Each Window befor
starting its construction looks if an appropriate configuration already exists andwi t
e

publishes its request with App-Id, required size of the view. The Windows Layo %

s
own configuration to calculate and publish the position and size for the Win ome

G
of these functions are implemented by Window Manager provided a erating
System. To enable platform independence an explicit modelling of the oncepts in IL is
needed.

Focus management — is done by Ul Controller. Each application iking focus requests it

from Ul Controller, who decides if the focus change is allowed.

As always, the In2Rail-Platform shall provide only Specifications for Topics and the data

8.6.1 Selection usage

structures in the Topics. For details see D8.4.
8.6 Use cases for Ul integration %b
In TMS domain several examples where ction-pattern can be used:

= A restriction is selected restriction editor and because of that the restriction

should be centred topology view;
= A station is selec
CCTV view;

= A train is selected in the time-distance diagram and the corresponding train driver is

the map view and because of that the station is shown in the
shown in ﬁe train driver communication view.
An Qs ing aspect could be the activation of Actions by an external logic (see Figure 8.8).

N

GA 635900 Page 39 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

App 1

. Action
Selection

state
A

Customer specific &

\ 4

logic (microservice)

Figure 8.8: Separation of Uls by additional customer specific lo

If App 1 publishes a new selected object (e.g. a station) some add al legic can observe

\

case of overcrowding.
of the other.

the delay level in this station and decide to start CCTV-applicati
As a consequence both applications are totally unaware of the exi

the kind of selection. Therefore the
d,

Often, the business logic behind this process depends

Selection shall provide the kind of selection as well: ble clicked, menu-selected,

decide how to react on the

selection.

Further content of the Selection data r% the issuing Window-ID and the selected

element’s position on screen.

8.6.2 Lazy starting \

One of the features of Eclips@,RCP’is its lazy loading of plugins. The developer can put many

plugins into one “Appligati ut only the “Application”-Bundle is started at the beginning.
t

The others are loa la
instantiations are Ac S:

= A plugin [ﬁ)vides its extensions, which are used by connected plugins with extension
&

key-selected. In this case the “receiving” ap tion

s soon as their instantiation is required. Typical triggers for

nts to be represented in menus;
n as an action is activated (i.e. a method run() is called) the RCP loads the
ction implementation and gives the further execution to it.

This kind of application loading enables quick starts and high scalability.

tarting rendering Activities (local plugins) can be implemented by the means of AF: the
starting command for the application belongs to the static part of an Action (see Figure 8.9).

The Node observing the “Action”-Activation topics start an appropriate bundle as soon as an
Action requires that bundle and it is not yet started.

GA 635900 Page 40 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

App with Node
extension points management

A

b

v
Fired Bundle Desired Bundle x
Actions states states
A
Ul Controller

A
User
profiles

A 4

Session

States

Figure 8.9: Ul Controller providing lazy starting functionality
The Ul Controller is responsible for observing the qopi i Actions”, identifying the
required bundle states, and if the specific bun is n ive (not installed), asking the

Node management for it.

The logic behind the Ul Controller could ide range from pre-starting all bundles at
g to the configuration of the User Profile to

the beginning of their static positio rdi
fully dynamical actions based on the bility restrictions like available monitor resolution,

other started applications, available“space on desktop, etc. The implementation details of
this logic are not part of theln2 orm.
User profiles make it user to start the whole TMS in the desired configuration. In

traffic managemen a nts several roles cooperate with each other, e.g. dispatcher,
supervisor, etc. All %roles are already mentioned and described in D7.2 and D7.3 (see
chapter 4.10.7.1}{0Ie "in D7.3 and chapter 4.2.1 “Actors” in D7.2). For each of the roles
the scr needs to be adapted to their needs, with different views and arrangements (see
D7.3fchapter 4.10.5 “Layout of Views”). Even within one role, e.g. for the dispatcher, the

ie the arrangement of the views may be different. To reload such preferences of one
profiles are saved.

er profile contains:

= Configured workstation layout;
= The actual workstation layout.

Workstation layout contains the definition of represented Windows (started bundles) incl.
Screen-selection and positioning.

GA 635900 Page 41 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

8.6.3 Rendering of remote content

Nowadays, popular approach to provide Ul is the Web-based clients. In this case, the
integrating Application can provide its own view, which renders the Web-based
representation of the remote logic.

Web applications are not the only way to provide the content remotely. Some oth x
techniques on the market are:

= RDP (Remote desktop protocol); A
= VNC Remote Framebuffer protocol; Q
* Nomachine NX Protocol; %

= |CA protocol (Citrix);
= X-Protocol.

The configuration information to start such a Ul shall be part of n-configuration: As
soon as an Action is started the integrating Application provides a ring View and starts
the communication library supporting the rendering engin

As the communication between Ul-Applications is don r IL, no additional communication
infrastructure for “content”-based integration &f the local and the remote application is

needed. They can use the Action/SeIectiorg présented in previous sections.

GA 635900 Page 42 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

9 Conclusions

The critical point for opening the TMS markets and driving innovations represents the
modularisation of the TMS software. This step allows many companies to provide small

functionalities solving specific TMS issues. \
On the other hand splitting the TMS software in many modules introduces new issues:
= The reliability of the TMS as a whole must be ensured;

= Each small TMS application shall be deployed, versioned, tested for t'
configured;

= The small TMS applications must be orchestrated (started, s mically
configured);
= The small TMS applications must create a consistent User Int e on the operator’s

workstation;
= The requirements on hardware shall not be (much)fhigher than for conventional TMS
software.

The Application Framework shall solve these problems.

The long life cycle of the TMS application h 5 years prevents direct use of the

existing integration platforms on the n the one hand there are several

projects/products competing so theirdifetime,is currently unpredictable. On the other hand

the interfaces and functionalitie projects are different, so the substitution of the

solution could require considerable rt from the IMs.

This document together withideli¥erable D8.7 provides a narrow wrapper, separating actual

implementation fromathe using it in TMS. This allows simple exchange of the basis
technology withoutiayvol nt of IM and ensures long life time of the integrated TMS
software.

’

GA 635900 Page 43 of 45

In2Rail Deliverable D8.6
Description of the Generic Application Framework and its constituents

10 Appendix A

View Name Summary
Widget View This view offers different widgets, connected to the internet
which provide to the user complementary information tha
may be useful depending on the use case/operational
scenario.

Map View This view provides an animated map containing
dynamic information. Layer-concept shall be
different kinds of information, such as: info
crew management, consist manageme
evacuation facilities, etc.

i peration,

Topology View A schematic view of the railway is prov , allowing the user
to concentrate on railway operatio eeded
CCTV View This view shall offer CCTV jisfages of the different cameras

installed in the area being,controlled at the TMS
Telefony-View This view shall allow t to connect with the train
drivers and other staff by communication utilising GSM-
R and other communigation means.

Alarm and Events View List of alarms a hat are being processed by the TMS
displayed rview

Planning View rovide schedule and regulation information

Settings View
Actions View

ing the user to customize the workstation
namic view, automatically activated when the user

Detailed View A view for displaying details of a certain element. The details
vary depending on the selection done
Assets View View for displaying assets information in real time that can be
V4 used by maintenance personnel
Logistics View View for displaying logistic information associated with the
maintenance of the railway
R ts and stats view View for creating and displaying reports and stats of the TMS.

The view provides support for both “operation of the railway”
information and maintenance information
stomer information | View for graphical representation of the customer

View information infrastructure.
Table 10.1: Details of Workstation Views [D7.3 chapter 4.10.4.]

GA 635900 Page 44 of 45

In2Rail

Deliverable D8.6
Description of the Generic Application Framework and its constituents

11 References

[ACCP 2017]
[AWS 2017]

[Cachin et.al.2006]
[Chappell 2004]

[CloudFoundry
2017]
[Daniel et al 2007]

[Docker 2017]
[EC2 2017]

[EMB 2017]
[Hazelcast 2017]
[Kubernetes 2017]
[MS VMM 2017]
[IN2RAIL D7.1]
[IN2RAIL D7.2]
[IN2RAIL D7.3]
[OMG DDS 2017]

[OpenShift 2017]
[0OSGi 2017]

[Paulheim 2009] ¢

https://accelerite.com/products/cloudplatform/

Docker Enterprise Edition on

the AWS Cloud,

https://s3.amazonaws.com/quickstart-

retrieved from

reference/docker/latest/doc/docker-datacenter-on-the-aws-

cloud.pdf

Introduction to Reliable and secure distributed programming.
Cachin, R. Guerraoui, R. Rodrigues, Springer, 2006

2004.
https://cloudfoundry.io

Understanding Ul Integration: A
and Opportunities. F. Daniel, M
Saint-Paul, F. Casati
http://www.floriandaniel.it/pape
https://docs.docker.com/engin
http://docs.aws.amazon.com/A

Survey of
. Mater
2007.
aniellE
m
on

rs

Enterprise Service Bus: Theory in Practice; D. A. Cha piIIy,
eg Technologies,

in Yu, B. Benatallah, R.
etrieved
ICO7.pdf

from

/latest/developerguide/doc

ker-basics.html

http://www.embotics co@’ons—cloud—governance
Hazelcast IMDG, retrie ttps://hazelcast.org/

https://kubernet

Distribution Service’
w.omg.org/spec/DDS
openshift.io/

OSGi Alliance:

OSGi

* (DDS™),

Core.

Retrieved

m/en-us/system-center/vmm/overview
h Level Requirements. IN2RAIL

he Standard Operator Workstation. IN2RAIL
retrieved

from

from

ttps://osgi.org/download/osgi.core-7.0.0-early-draft-2017-03.pdf
Ontologies for User Interface Integration, H. Paulheim, Retrieved
from http://www.heikopaulheim.com/docs/iswc 2009.pdf

[R 20 https://www.redhat.com/en/technologies/management/cloudforms
SW 2017 http://www.solarwinds.com/virtualization-manager
7] https://turbonomic.com/solutions/projects/private-cloud-
management/
2017] https://www.vmware.com/products/vcloud-suite.html
Winn 2017] Cloud Foundry: The definitive guide, D.C.E. Winn, O’Reilly, 2017
GA 635900 Page 45 of 45

\Y

https://s3.amazonaws.com/quickstart-reference/docker/latest/doc/docker-datacenter-on-the-aws-cloud.pdf
https://s3.amazonaws.com/quickstart-reference/docker/latest/doc/docker-datacenter-on-the-aws-cloud.pdf
https://s3.amazonaws.com/quickstart-reference/docker/latest/doc/docker-datacenter-on-the-aws-cloud.pdf
https://cloudfoundry.io/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://kubernetes.io/
http://www.heikopaulheim.com/docs/iswc_2009.pdf

